70. 爬楼梯

这篇具有很好参考价值的文章主要介绍了70. 爬楼梯。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

提示:文章来源地址https://www.toymoban.com/news/detail-736297.html

  • 1 <= n <= 45
class Solution {
public:
    int climbStairs(int n) {
        if(n < 2) return n;
        vector<int>dp(n+1);
        //dp[i]:到达第i个台阶有dp[i]种方法
        dp[1] = 1;
        dp[2] = 2;
        for(int i = 3;i <= n;i++){
            dp[i] = dp[i-1]+dp[i-2];
        }
        return dp[n];
    }
};

到了这里,关于70. 爬楼梯的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 代码随想录Leetcode70. 爬楼梯

            空间复杂度为O(N),如果想要优化空间复杂度,则只用三个变量进行状态转移也可以,参考 代码随想录 Leetcode509. 斐波那契数-CSDN博客

    2024年02月19日
    浏览(82)
  • LeetCode:509. 斐波那契数 && 70. 爬楼梯 && 746. 使用最小花费爬楼梯

    斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n 1 给定 n ,请计算 F(n) 。 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬

    2024年02月05日
    浏览(48)
  • leetcode每日一练-第70题-爬楼梯

      一、思路 动态规划 二、解题方法 使用一个动态规划数组 dp 来记录到达每个台阶的不同方法数。初始情况下,当台阶数为 1 时,方法数为 1,当台阶数为 2 时,方法数为 2。然后,我们从第 3 阶开始逐步计算每一阶的方法数,方法数等于前一阶和前两阶方法数之和。最终,

    2024年02月14日
    浏览(51)
  • LeetCode 70. 爬楼梯 C/C++/Python

    欢迎关注博主 Mindtechnist 或加入【Linux C/C++/Python社区】一起探讨和分享Linux C/C++/Python/Shell编程、机器人技术、机器学习、机器视觉、嵌入式AI相关领域的知识和技术。 专栏:LeetCode刷题 题目描述 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有

    2024年02月13日
    浏览(40)
  • leetcode 70.爬楼梯+209.长度最小的子数组

    70. 爬楼梯 - 力扣(LeetCode) 题目: 假设你正在爬楼梯。需要  n  阶你才能到达楼顶。 每次你可以爬  1  或  2  个台阶。你有多少种不同的方法可以爬到楼顶呢?  示例:   输入: n = 3 输出: 3 解释: 有三种方法可以爬到楼顶。 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 +

    2024年02月03日
    浏览(50)
  • 【LeetCode题目详解】第九章 动态规划part01 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯 (day38补)

    斐波那契数  (通常用  F(n) 表示)形成的序列称为 斐波那契数列 。该数列由  0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: 给定  n ,请计算 F(n) 。 示例 1: 示例 2: 示例 3: 提示: 0 = n = 30 斐波那契数列大家应该非常熟悉不过了,非常适合作为动规第

    2024年02月07日
    浏览(47)
  • 算法Day38 | 动态规划,509. 斐波那契数, 70. 爬楼梯, 746. 使用最小花费爬楼梯

    动态规划是一种解决问题的算法思想。它通常用于优化问题,其中要求找到一个最优解或最大化(最小化)某个目标函数。 动态规划的核心思想是 将问题分解成更小的子问题,并通过存储子问题的解来避免重复计算 。这样,可以通过解决子问题来构建原始问题的解。动态规

    2024年02月09日
    浏览(58)
  • 算法训练Day45:70. 爬楼梯 (进阶) 322. 零钱兑换 279.完全平方数

    Category Difficulty Likes Dislikes ContestSlug ProblemIndex Score algorithms Easy (54.04%) 2993 0 - - 0 Tags 记忆  |  数学  |  动态规划 Companies 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 示例 1: 示例 2: 提示: 1 = n = 45

    2024年02月01日
    浏览(45)
  • 算法训练第三十八天|动态规划理论基础、509. 斐波那契数 、70. 爬楼梯 、 746. 使用最小花费爬楼梯

    参考:https://programmercarl.com/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html 动态规划是什么 动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。 所以 动态规划中每一个状态一定是由上一个状态推导出来的 ,这一

    2024年02月04日
    浏览(40)
  • 算法训练第四十五天|70. 爬楼梯 (进阶)、322. 零钱兑换、279.完全平方数

    题目链接:70. 爬楼梯 (进阶) 参考:https://programmercarl.com/0070.%E7%88%AC%E6%A5%BC%E6%A2%AF%E5%AE%8C%E5%85%A8%E8%83%8C%E5%8C%85%E7%89%88%E6%9C%AC.html 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数

    2023年04月26日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包