Open3D 点云与模型ICP配准(Python,详细步骤版本)

这篇具有很好参考价值的文章主要介绍了Open3D 点云与模型ICP配准(Python,详细步骤版本)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、简介

这是一个很有趣的功能,在真正进入主题之前,让我们先回顾一下点云与点云ICP算法的过程,如下图所示:

open3d点云配准,Open3D&Meshlab,python,open3d,点云,模型,icp

(1)挑选发生重叠的点云子集,这一步如果原始点云数据量比较巨大,一般会对原始点云进行下采样操作。
(2)匹配特征点。通常是距离最近的两个点,当然这需要视评判的准则而定。
(3) 加权。根据点的匹配程度对找到的对应点进行加权。
(4)抑制匹配点。根据匹配点的匹配程度来对一些质量较差的点对进行抑制(剔除)。
(5)误差最小化。通过最小化距离的平方和来估计变换参数。
(6)点云变换。通过评估出的变换矩阵来转换源点云。

整个过程除了最后一步,剩余的步骤已有大量的文献进行过探索和研究,那么点云与模型的配准又有什么不同呢?主要的不同点就在于,匹配特征点的方式不同,点云与点云ICP过程中,往往只需要查找目标点云中的最近点即可,但点云与模型的ICP配准却不能直接这样做,这是因为模型只有面片的缘故,那么怎么去沿袭传统的ICP算法呢?有需求就自然有解决问题的人,有学者就提出我们可以通过求解点到面片的最近点的方式,来构建特征配准点对,这也就可以使得经典的ICP文章来源地址https://www.toymoban.com/news/detail-736713.html

到了这里,关于Open3D 点云与模型ICP配准(Python,详细步骤版本)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Open3D 点云裁剪(Python版本)

    基于用户给定的多边形区域,来提取区域内所有的点云数据,这个多边形Open3D会通过一个json文件来进行指定。 CropPointCloud.py

    2024年02月13日
    浏览(46)
  • Open3D 点云颜色渲染(Python版本)

    Open3D主要有两种方式来进行点云的颜色渲染,一种是使用PaintUniformColor函数为点云赋单色,第二种则是通过对点云对象的colors数组进行操作来实现,这种方式更为灵活。这里也简单实现一下单色渲染以及随机赋色。 PainPointCloud.py

    2024年02月11日
    浏览(43)
  • 『OPEN3D』1.1 点云处理 python篇

    目录 1.open3d中的点云IO 2.点云的可视化 3 点云voxel下采样 4. 顶点法线估计 5.最小外界矩 6. 凸包计算 7. 点云距离计算 8. DBSCAN clustering聚类 9. RANSAC(Random Sample Consensus)  10. 点云平面分割 11. 隐藏点移除 12.outliers移除 13 最远点采样(Farthest Point Sample) 专栏地址:https://blog.csdn.net/

    2024年02月02日
    浏览(40)
  • Open3D 点云投影到拟合平面:Python 实现详解

    Open3D 点云投影到拟合平面:Python 实现详解 点云是指由大量离散的 3D 点组成的几何图形,常常用于工业检测、三维建模等领域。而拟合平面是指在点云数据中找到一个最适合的平面,该平面能够近似地拟合这些点云数据。将点云投影到拟合平面可以方便地进行分析和处理。本

    2024年02月07日
    浏览(52)
  • 三种点云下采样方法(二)— open3d python

    本文为博主原创文章,未经博主允许不得转载。 本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。          点云下采样是对点云以一定的采样规则重新进行采样,目的是在保证点云整体几何特征不变的情况

    2023年04月08日
    浏览(51)
  • Open3D点云库(0.16.0)安装配置(Python版本)

    Open3D是一个开源的点云和网格处理库,它支持快速开发处理3D数据的软件。Open3D前端在c++和Python中公开了一组精心挑选的数据结构和算法;后端则是经过高度优化,并设置为并行化。它只需要很少的工作就可以在不同的平台上进行布置,并从源代码编译。它的优秀毋庸置疑,

    2024年02月14日
    浏览(49)
  • 三维点云拟合圆形(附open3d python 代码)

    圆拟合方法可分为以下步骤: 使用  SVD(奇异值分解) 找到平均中心点集的最佳拟合平面。 将均值中心点投影到新的 2D 坐标中的拟合平面上。 使用 最小二乘法 拟合 2D 坐标中的圆并得到圆心和半径。 将圆中心变换回 3D 坐标。现在,拟合圆由其中心、半径和法线向量指定。

    2024年02月06日
    浏览(47)
  • Open3D 点云数据转深度图像(一,python版本)

    由于对深度图像也是感觉比较好奇,所以就简单的使用正投影的方式来生成一个深度图像来看一下效果,深度值这里采用了z值的差值(高差),具体的代码与效果如下所示。 这里是将点云投影到xoy平面上,使用高差作为深度值。

    2024年02月15日
    浏览(40)
  • Open3D 点云投影到直线 (python详细过程版)

      直线方程有三种表示法:一般式、点向式、参数式。PCL中统一采用的是点向式,直线的点向式方程为: x − x 0 m = y −

    2024年02月10日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包