Hadoop、Spark和Hive调优优化原理

这篇具有很好参考价值的文章主要介绍了Hadoop、Spark和Hive调优优化原理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

作者:禅与计算机程序设计艺术

1.简介

随着互联网和大数据的普及以及处理器性能的提升,当时的技术已经远远超过了当时能够想象的范围。这段时间MapReduce计算框架已经成为一个主流的开源计算框架,包括Hadoop、Pig、Hive、Mahout、Storm等。
2010年Apache Spark横空出世,基于内存计算框架,是当前最火的大数据分析引擎之一,基于Scala语言实现,是Hadoop MapReduce的替代者。Spark支持Java、Python、R等多种编程语言,其快速的计算速度让其广受欢迎。
2014年Facebook开发Hive,支持HQL(Hive Query Language)语法查询大数据,成为目前最流行的大数据分析工具。Hive自带数据倾斜解决方案、复杂SQL语句自动优化和分区表支持等功能均十分强大。
2017年谷歌开发了Google Cloud Dataproc,为用户提供云端运行Hadoop、Spark和Hive集群的能力,解决由于Hadoop单点故障导致业务无法正常运行的问题。
2018年,微软发布了Azure HDInsight,作为服务于企业的Hadoop、Spark、Hive集群管理平台,帮助客户轻松创建、删除和配置计算资源,提升大数据工作负载的效率。此外,还有更多的平台提供大数据服务,例如Cloudera、Databricks、Amazon EMR等。
2020年,蚂蚁集团宣布开源了达摩院开源项目Druid,其是一个开源分布式时间序列数据库,能够满足海量数据、高速查询需求。该项目拥有来自世界各地的开发者提交的代码贡献,是一个拥有活跃社区和庞大的生态系统的优秀开源项目。
2021年,阿里巴巴宣布开源了Nebula Graph,其是一个兼具图数据库和分布式键值文章来源地址https://www.toymoban.com/news/detail-736724.html

到了这里,关于Hadoop、Spark和Hive调优优化原理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Zookeeper+Hadoop+Spark+Flink+Kafka+Hbase+Hive

    Zookeeper+Hadoop+Spark+Flink+Kafka+Hbase+Hive 完全分布式高可用集群搭建 下载 https://archive.apache.org/dist/  Mysql下载地址 Index of /MySQL/Downloads/ 我最终选择 Zookeeper3.7.1 +Hadoop3.3.5 + Spark-3.2.4 + Flink-1.16.1 + Kafka2.12-3.4.0 + HBase2.4.17 + Hive3.1.3  +JDK1.8.0_391  IP规划 IP hostname 192.168.1.5 node1 192.168.1.6 node

    2024年01月23日
    浏览(52)
  • 大数据:Hadoop基础常识hive,hbase,MapReduce,Spark

    Hadoop是根据Google三大论文为基础研发的,Google 三大论文分别是: MapReduce、 GFS和BigTable。 Hadoop的核心是两个部分: 一、分布式存储(HDFS,Hadoop Distributed File System)。 二、分布式计算(MapReduce)。 MapReduce MapReduce是“ 任务的分解与结果的汇总”。 Map把数据切分——分布式存放

    2024年04月25日
    浏览(55)
  • Spark、RDD、Hive 、Hadoop-Hive 和传统关系型数据库区别

    Hive Hadoop Hive 和传统关系型数据库区别 Spark 概念 基于内存的分布式计算框架 只负责算 不负责存 spark 在离线计算 功能上 类似于mapreduce的作用 MapReduce的缺点 运行速度慢 (没有充分利用内存) 接口比较简单,仅支持Map Reduce 功能比较单一 只能做离线计算 Spark优势 运行速度快

    2024年02月13日
    浏览(46)
  • 13.108.Spark 优化、Spark优化与hive的区别、SparkSQL启动参数调优、四川任务优化实践:执行效率提升50%以上

    13.108.Spark 优化 1.1.25.Spark优化与hive的区别 1.1.26.SparkSQL启动参数调优 1.1.27.四川任务优化实践:执行效率提升50%以上 1.1.25.Spark优化与hive的区别 先理解spark与mapreduce的本质区别,算子之间(map和reduce之间多了依赖关系判断,即宽依赖和窄依赖。) 优化的思路和hive基本一致,比较

    2024年02月10日
    浏览(56)
  • 大数据篇 | Hadoop、HDFS、HIVE、HBase、Spark之间的联系与区别

    Hadoop是一个开源的分布式计算框架,用于存储和处理大规模数据集。它提供了一个可扩展的分布式文件系统(HDFS)和一个分布式计算框架(MapReduce),可以在大量廉价硬件上进行并行计算。 HDFS(Hadoop Distributed File System)是Hadoop的分布式文件系统。它被设计用于在集群中存储

    2024年02月16日
    浏览(58)
  • Hadoop-HA-Hive-on-Spark 4台虚拟机安装配置文件

    apache-hive-3.1.3-bin.tar spark-3.0.0-bin-hadoop3.2.tgz hadoop-3.1.3.tar.gz 在hdfs上新建 spark-history(设置权限777),spark-jars文件夹 上传jar到hdfs 链接hadoop中的文件 ln -s 源文件名 新文件名 链接hive中的文件 ln -s 源文件名 新文件名 链接hadoop中的文件 ln -s 源文件名 新文件名

    2024年02月07日
    浏览(44)
  • 构建大数据环境:Hadoop、MySQL、Hive、Scala和Spark的安装与配置

    在当今的数据驱动时代,构建一个强大的大数据环境对于企业和组织来说至关重要。本文将介绍如何安装和配置Hadoop、MySQL、Hive、Scala和Spark,以搭建一个完整的大数据环境。 安装Hadoop 首先,从Apache Hadoop的官方网站下载所需的Hadoop发行版。选择适合你系统的二进制发行版,下

    2024年02月11日
    浏览(53)
  • 利用Hadoop处理离线数据:Hive和Spark离线数据处理实现

    作者:禅与计算机程序设计艺术 引言 随着大数据时代的到来,越来越多的数据产生于各种业务系统。这些数据往往需要在离线环境中进行处理,以降低数据处理的时间和成本。Hadoop作为目前最为流行的分布式计算框架,提供了强大的离线数据处理能力。Hive和Spark作为Hadoop生

    2024年02月11日
    浏览(44)
  • 大数据系统常用组件理解(Hadoop/hive/kafka/Flink/Spark/Hbase/ES)

    一.Hadoop Hadoop是一个由Apache基金会所开发的分布式系统基础架构。 Hadoop 以一种可靠、高效、可伸缩的方式进行数据处理。 Hadoop的核心是yarn、HDFS和Mapreduce。yarn是资源管理系统,实现资源调度,yarn是Hadoop2.0中的资源管理系统,总体上是master/slave结构。对于yarn可以粗浅将其理解

    2024年02月20日
    浏览(46)
  • 大数据毕业设计选题推荐-收视点播数据分析-Hadoop-Spark-Hive

    ✨ 作者主页 :IT研究室✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐 ⬇⬇⬇ Java项目 Python项目 安卓项目 微信小程序项目

    2024年02月05日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包