《数字图像处理-OpenCV/Python》连载(2)目录

这篇具有很好参考价值的文章主要介绍了《数字图像处理-OpenCV/Python》连载(2)目录。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

《数字图像处理-OpenCV/Python》连载(2)目录


本书京东优惠购书链接:https://item.jd.com/14098452.html
本书CSDN独家连载专栏:https://blog.csdn.net/youcans/category_12418787.html

《数字图像处理-OpenCV/Python》连载(2)目录,《数字图像处理-OpenCV》连载,# 图像处理学习课,opencv,python,计算机视觉,图像处理,原力计划


第一部分 OpenCV-Python的基本操作

第1章 图像的基本操作 3

1.1 图像的读取与保存 3
1.1.1 图像的读取 3
1.1.2 图像的保存 4
1.2 图像的显示 6
1.3 基于Matplotlib显示图像 7
1.4 视频文件的读取与保存 9
1.5 多帧图像的读取与保存 12

第2章 图像的数据格式 15

2.1 图像属性与数据类型 15
2.1.1 图像颜色分类 15
2.1.2 以Numpy数组表示数字图像 15
2.1.3 图像的数据类型 16
2.2 图像的创建与复制 17
2.3 图像的裁剪与拼接 19
2.4 图像通道的拆分与合并 21
2.5 获取与修改像素值 23
2.6 快速LUT替换像素值 25

第3章 彩色图像处理 29

3.1 图像的颜色空间转换 29
3.1.1 图像的颜色空间 29
3.1.2 图像的颜色空间转换 29
3.2 灰度图像的伪彩色处理 31
3.3 多模态数据合成的伪彩色图像 33
3.4 图像的色彩风格滤镜 35
3.5 调节图像的色彩平衡 37

第4章 绘图与鼠标交互 40

4.1 OpenCV绘图函数的参数 40
4.2 绘制直线与线段 41
4.3 绘制垂直矩形 43
4.4 绘制旋转矩形 45
4.5 绘制圆形和椭圆 47
4.5.1 绘制圆形 47
4.5.2 绘制椭圆和椭圆弧 49
4.6 绘制多段线和多边形 53
4.7 图像上添加文字 56
4.8 鼠标框选矩形区域 57
4.9 鼠标交互操作 59


第二部分 图像处理的基本方法

第5章 图像的算术运算 65

5.1 图像的加法与减法运算 65
5.2 使用掩模图像控制处理区域 67
5.3 图像的加权加法运算 69
5.4 图像的乘法与除法运算 71
5.5 图像的位运算 73
5.6 图像的积分运算 77
5.7 图像的归一化处理 80


第6章 图像的几何变换 81

6.1 图像的平移 81
6.2 图像的缩放 83
6.3 图像的旋转 85
6.4 图像的翻转 88
6.5 图像的斜切 89
6.6 图像的投影变换 91
6.7 图像的重映射 94


第7章 图像的灰度变换 99

7.1 图像反转变换 99
7.2 线性灰度变换 100
7.3 非线性灰度变换 105
7.3.1 对数变换 105
7.3.2 幂律变换 105
7.4 分段线性变换之对比度拉伸 108
7.5 分段线性变换之灰度级分层 109
7.6 灰度变换之比特平面 110
7.7 基于灰度变换调整图像色阶 112


第8章 图像的直方图处理 116

8.1 图像的灰度直方图 116
8.2 图像的直方图均衡化 118
8.3 图像的直方图匹配 120
8.4 基于局部直方图统计量的图像增强 124
8.5 限制对比度自适应直方图均衡化 126


第9章 图像的阈值处理 129

9.1 固定阈值处理 129
9.2 OTSU阈值算法 133
9.3 多阈值处理算法 134
9.4 自适应阈值处理 137
9.5 移动平均阈值处理 138
9.6 HSV颜色空间的阈值分割 140
9.6.1 HSV颜色空间 140
9.6.2 区间阈值处理 141


第三部分 图像处理的高级方法

第10章 图像卷积与空间滤波 149

10.1 相关运算与卷积运算 149
10.1.1 相关运算 149
10.1.2 可分离卷积核 150
10.1.3 边界扩充 151
10.2 空间滤波之盒式滤波器 153
10.3 空间滤波之高斯滤波器 155
10.4 空间滤波之统计排序滤波器 157
10.4.1 中值滤波器 157
10.4.2 最大值滤波器 157
10.4.3 最小值滤波器 158
10.4.4 中点滤波器 158
10.4.5 修正阿尔法均值滤波器 158
10.5 空间滤波之自适应滤波器 161
10.5.1 自适应局部降噪滤波器 161
10.5.2 自适应中值滤波器 161
10.6 空间滤波之双边滤波器 164
10.7 空间滤波之钝化掩蔽 166
10.8 空间滤波之Laplacian算子 168
10.9 空间滤波之Sobel算子与Scharr算子 169
10.9.1 Sobel算子 169
10.9.2 Scharr算子 170
10.10 图像金字塔 173
10.10.1 高斯金字塔 173
10.10.2 拉普拉斯金字塔 174


第11章 傅里叶变换与频域滤波 179

11.1 图像的傅里叶变换 179
11.1.1 用OpenCV实现傅里叶变换 180
11.1.2 用Numpy实现傅里叶变换 181
11.1.3 频谱中心化 181
11.2 快速傅里叶变换 185
11.3 频域滤波的基本步骤 187
11.4 频域滤波之低通滤波 189
11.4.1 低通滤波器的传递函数 189
11.4.2 频域滤波的详细步骤 192
11.5 频域滤波之高通滤波 195
11.6 频域滤波之Laplacian算子 198
11.6.1 Laplacian算子 198
11.6.2 梯度算子的传递函数 198
11.7 频域滤波之选择性滤波器 202
11.7.1 带阻滤波器和带通滤波器 203
11.7.2 陷波滤波器 203


第12章 形态学图像处理 209

12.1 腐蚀运算和膨胀运算 209
12.1.1 腐蚀和膨胀 209
12.1.2 形态学处理的结构元 210
12.2 形态学运算函数 212
12.2.1 形态学高级运算 213
12.2.2 形态学处理函数 214
12.3 灰度形态学运算 218
12.3.1 灰度腐蚀与灰度膨胀 218
12.3.2 灰度开运算与灰度闭运算 219
12.3.3 灰度顶帽算子和灰度底帽算子 219
12.4 形态学算法之边界提取 225
12.5 形态学算法之直线提取 226
12.6 形态学算法之线条细化 228
12.7 形态学重建之边界清除 230
12.8 形态学重建之孔洞填充 232
12.8.1 孔洞填充算法 232
12.8.2 泛洪填充算法 233
12.9 形态学重建之骨架提取 237
12.10 形态学重建之粒径分离 238
12.11 基于形态学的粒度测定 240
12.12 形态学算法之边缘检测和角点检测 242


第13章 图像变换、重建与复原 245

13.1 直角坐标与极坐标变换 245
13.2 霍夫变换直线检测 247
13.3 霍夫变换圆检测 250
13.4 雷登变换与反投影图像重建 252
13.4.1 投影和雷登变换 252
13.4.2 反投影和图像重建 253
13.5 雷登变换滤波反投影图像重建 257
13.6 退化图像复原之逆滤波 260
13.7 退化图像复原之维纳滤波 263
13.8 退化图像复原之最小二乘法滤波 266


第四部分 计算机视觉

第14章 边缘检测与图像轮廓 273

14.1 边缘检测之梯度算子 273
14.2 边缘检测之LoG算子 275
14.3 边缘检测之DoG算子 278
14.4 边缘检测之Canny算子 280
14.5 边缘连接 282
14.6 轮廓的查找与绘制 284
14.6.1 查找图像轮廓 284
14.6.2 绘制图像轮廓 285
14.7 轮廓的基本参数 288
14.7.1 轮廓的面积 288
14.7.2 轮廓的周长 288
14.7.3 轮廓的质心 289
14.7.4 轮廓的等效直径 289
14.7.5 极端点的位置 289
14.8 轮廓的形状特征 292
14.8.1 轮廓的垂直矩形边界框 292
14.8.2 轮廓的最小矩形边界框 292
14.8.3 轮廓的最小外接圆 293
14.8.4 轮廓的最小外接三角形 293
14.8.5 轮廓的近似多边形 294
14.8.6 轮廓的拟合椭圆 294
14.8.7 轮廓的拟合直线 294
14.8.8 轮廓的凸壳 295
14.9 轮廓的属性 298
14.9.1 轮廓的宽高比 298
14.9.2 轮廓的面积比 299
14.9.3 轮廓的坚实度 299
14.9.4 轮廓的方向 299
14.9.5 轮廓的掩模 299
14.9.6 轮廓的最大值、最小值及其位置 300
14.9.7 灰度均值和颜色均值 300
14.9.8 检测轮廓的内部/外部 300
14.10 矩不变量与形状相似性 303
14.10.1 图像的矩不变量 303
14.10.2 基于矩不变量的形状相似性 304


第15章 图像分割 308

15.1 区域生长与分离 308
15.1.1 区域生长 308
15.1.2 区域分离与聚合 308
15.2 超像素区域分割 311
15.2.1 简单线性迭代聚类 311
15.2.2 能量驱动采样 311
15.2.3 线性谱聚类 312
15.2.4 OpenCV超像素分割函数 312
15.3 分水岭算法 317
15.4 图割分割算法 322
15.4.1 GraphCut图割算法 322
15.4.2 GrabCut图割算法 322
15.4.3 OpenCV中的图割算法 323
15.5 均值漂移算法 328
15.6 运动图像分割 331
15.6.1 帧间差分法 331
15.6.2 背景差分法 331
15.6.3 密集光流法 332


第16章 特征描述 340

16.1 特征描述之弗里曼链码 340
16.2 特征描述之傅里叶描述符 344
16.3 特征描述之傅里叶频谱分析 347
16.4 特征描述之区域特征描述 350
16.5 特征描述之灰度共生矩阵 353
16.6 特征描述之LBP描述符 356
16.6.1 基本LBP特征描述符 356
16.6.2 扩展LBP特征描述符 356
16.6.3 LBP特征统计直方图 357
16.7 特征描述之HOG描述符 363
16.8 特征描述之BRIEF描述符 367
16.9 特征描述之FREAK描述符 371


第17章 特征检测与匹配 374

17.1 角点检测之Harris算法 374
17.1.1 Harris角点检测算法 374
17.1.2 Shi-Tomas角点检测算法 375
17.1.3 OpenCV角点检测算法 375
17.2 角点检测之亚像素精确定位 377
17.3 特征检测之SIFT算法 380
17.3.1 SIFT算法的原理 380
17.3.2 OpenCV的SIFT类 381
17.4 特征检测之SURF算法 384
17.4.1 SURF算法原理 384
17.4.2 OpenCV的SURF类 385
17.5 特征检测之FAST算法 387
17.6 特征检测之ORB算法 390
17.6.1 基于尺度空间的FAST关键点检测 390
17.6.2 基于点方向的BRIEF特征描述符 390
17.7 特征检测之MSER算法 392
17.8 特征匹配之暴力匹配 396
17.9 特征匹配之最近邻匹配 399
17.9.1 最近邻匹配 399
17.9.2 单应性映射变换 400


第18章 机器学习 404

18.1 OpenCV机器学习模块 404
18.2 主成分分析 406
18.2.1 主成分分析基本方法 406
18.2.2 OpenCV的PCA类 406
18.3 k均值聚类算法 409
18.4 k近邻算法 413
18.5 贝叶斯分类器 417
18.6 支持向量机 420
18.6.1 支持向量机算法 420
18.6.2 OpenCV的SVM类 421
18.6.3 OpenCV的SVMSGD类 422
18.7 人工神经网络算法 426
18.7.1 神经网络算法介绍 426
18.7.2 ANN_MLP神经网络模型 427


参考文献 436

《数字图像处理-OpenCV/Python》连载(2)目录,《数字图像处理-OpenCV》连载,# 图像处理学习课,opencv,python,计算机视觉,图像处理,原力计划

本书京东优惠购书链接:https://item.jd.com/14098452.html


版权声明:
youcans@xupt 原创作品,转载必须标注原文链接:(https://blog.csdn.net/youcans/article/details/132435636)
Copyright 2023 youcans, XUPT
Crated:2023-08-22
欢迎关注专栏: 《数字图像处理-OpenCV/Python》连载文章来源地址https://www.toymoban.com/news/detail-736868.html

到了这里,关于《数字图像处理-OpenCV/Python》连载(2)目录的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 《数字图像处理-OpenCV/Python》连载(10)图像属性与数据类型

    本书京东优惠购书链接:https://item.jd.com/14098452.html 本书CSDN独家连载专栏:https://blog.csdn.net/youcans/category_12418787.html 在Python语言中,OpenCV以Numpy数组存储图像,对图像的访问和处理都是通过Numpy数组的操作来实现的。 本章内容概要 介绍Python语言中OpenCV的数据结构,学习获取图像

    2024年02月07日
    浏览(88)
  • 《数字图像处理-OpenCV/Python》连载(4)图像的读取与保存

    本书京东优惠购书链接:https://item.jd.com/14098452.html 本书CSDN独家连载专栏:https://blog.csdn.net/youcans/category_12418787.html 为了方便初学者从零开始学习OpenCV-Python,本书从图像的读取、保存和显示等基本操作开始介绍,使读者可以循序渐进地使用和理解本书的每一个例程。 本章内容

    2024年02月09日
    浏览(64)
  • 《数字图像处理-OpenCV/Python》连载(22)绘制直线与线段

    本书京东优惠购书链接:https://item.jd.com/14098452.html 本书CSDN独家连载专栏:https://blog.csdn.net/youcans/category_12418787.html 本章介绍OpenCV的绘图功能和简单的鼠标交互处理方法。与Excel或Matplotlib中的可视化数据图不同,OpenCV中的绘图功能主要用于在图像的指定位置绘制几何图形。 本

    2024年02月02日
    浏览(98)
  • 《数字图像处理-OpenCV/Python》连载(26)绘制椭圆和椭圆弧

    本书京东优惠购书链接:https://item.jd.com/14098452.html 本书CSDN独家连载专栏:https://blog.csdn.net/youcans/category_12418787.html 本章介绍OpenCV的绘图功能和简单的鼠标交互处理方法。与Excel或Matplotlib中的可视化数据图不同,OpenCV中的绘图功能主要用于在图像的指定位置绘制几何图形。 本

    2024年02月06日
    浏览(74)
  • 《数字图像处理-OpenCV/Python》连载:空间滤波之高斯滤波器

    本书京东 优惠购书链接 https://item.jd.com/14098452.html 本书CSDN 独家连载专栏 https://blog.csdn.net/youcans/category_12418787.html 图像滤波是指在尽可能保留图像细节特征的条件下对目标图像的噪声进行抑制,是常用的图像处理方法。 空间滤波也称空间域滤波,滤波器规定了邻域形状与邻域

    2024年02月02日
    浏览(59)
  • 【Python_Opencv图像处理框架】信用卡数字识别项目

    本篇文章是opencv学习的第六篇文章,前面主要讲解了对图像的一些基本操作,这篇文章我们就开始大展身手,将前面所学的基础操作活学活用。既能复习基础操作,又能学到一些新的知识。作为初学者,我尽己所能,但仍会存在疏漏的地方,希望各位看官不吝指正🥰 我们通

    2024年02月03日
    浏览(54)
  • 数字图像处理二维码识别python+opencv实现二维码实时识别

    数字图像处理二维码识别 python+opencv实现二维码实时识别 特点: (1)可以实现普通二维码,条形码; (2)解决了opencv输出中文乱码的问题 (3)增加网页自动跳转功能 (4)实现二维码实时检测和识别 代码保证原创、无错误、能正常运行(如果电脑环境配置没问题) 送二维

    2024年01月16日
    浏览(68)
  • 数字图像处理(实践篇)二十七 Python-OpenCV 滑动条的使用

    目录 1 涉及的函数 2 实践 1 涉及的函数 ⒈ setWindowProperty()用于设置GUI应用程序的属性 参数 : ① 

    2024年01月25日
    浏览(65)
  • 数字图像处理(实践篇)二十九 OpenCV-Python在图像中检测矩形、正方形和三角形的实践

    目录 1 方案 2 实践 1 方案 ①检测矩形和正方形 ⒈检测图像中的所有轮廓。 ⒉循环检查所有检测到的轮廓。 ⒊为每个轮廓找到近似的轮廓。如果近似轮廓中的顶点数为4,则计算 宽高比 用来区分 矩形 和 正方形 。如果宽高比在0.9到1.1之间,则认为为正方形,否则的话,则为

    2024年01月25日
    浏览(61)
  • OpenCV数字图像处理基于C++:图像分割

    图像阈值化分割是一种常用的、传统的图像分割技术,因其 实现简单、计算量小、性能比较稳定 而成为图像分割中基本和应用广泛的分割技术。特别 适合于目标和背景占据不同灰度级范围的图像 。不仅 可以极大地压缩数据量 ,而且大大 简化了分析和处理的步骤 ,是进行

    2024年02月11日
    浏览(69)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包