VDB之Chroma:Chroma/chromadb(一款优秀的向量数据库)的简介、安装、使用方法之详细攻略

这篇具有很好参考价值的文章主要介绍了VDB之Chroma:Chroma/chromadb(一款优秀的向量数据库)的简介、安装、使用方法之详细攻略。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

VDB之Chroma:Chroma/chromadb(一款优秀的向量数据库)的简介、安装、使用方法之详细攻略

目录

相关文章

DB之VDB:向量数据库(Vector Database)的简介、常用库、使用方法之详细攻略

chroma的简介

chroma的安装

chroma的使用方法

1、基础用法


相关文章

DB之VDB:向量数据库(Vector Database)的简介、常用库、使用方法之详细攻略

https://yunyaniu.blog.csdn.net/article/details/129106195

chroma的简介

VDB之Chroma:Chroma/chromadb(一款优秀的向量数据库)的简介、安装、使用方法之详细攻略,NLP/LLMs,BigData/Cloud Computing,向量数据库,自然语言处理,基础大模型

         2023年4月,Chroma获得1800万美元种子轮融资,除了机构投资者外,Chroma还获得了MongoDB、Scale、Hugging Face、Jasper等公司创始人或高管的投资,受到了整个生成式AI生态的欢迎。
         Chroma是一个基于向量检索库实现的轻量级向量数据库,内置了入门所需的一切,并提供了简单的API。它目前只支持CPU计算,但可以利用乘积量化的方法,将一个向量的维度切成多段,每段分别进行k-means,从而减少存储空间和提高检索效率。它还可以与LangChain集成,实现基于语言模型的应用。

         2023年6月正式发布Chroma,Chroma是一款AI 原生的开源嵌入数据库。Chroma 是一个开源的嵌入数据库。Chroma通过使知识事实和技能可以插拔到 LLM(语言模型)中,从而使构建 LLM 应用变得简单
         Chroma 为您提供以下工具:存储嵌入及其元数据、嵌入文档和查询、搜索嵌入。Chroma 的优势在于简洁性和开发者生产力、在搜索之上的分析、它同时也非常快速。Chroma 包括 Python 客户端 SDK、JavaScript/TypeScript 客户端 SDK 和一个服务器应用程序。
         在 Python 中,Chroma 可以在内存中运行,也可以在客户端/服务器(尚处于 alpha 阶段)模式下运行。在 JavaScript 中,Chroma 在客户端/服务器模式下运行,并与 Python 后端进行通信。
         特点如下所示:
>> 轻松生成嵌入:Chroma 拥有您使用嵌入所需的所有工具
>> 简单易用:就像 pip install 一样,在笔记本中 5 秒内使用
>> 丰富的功能:搜索、过滤等等
>> 集成:直接插入 LangChain、LlamaIndex、OpenAI 等
>> JavaScript 客户端
>> 免费:Apache 2.0 开源许可
         Chroma的优点是易用、轻量、智能,缺点是功能相对简单、不支持GPU加速。后续 Chroma 还会推出托管产品(Serverless 类产品),该产品将提供无服务器存储和检索功能,支持向上和向下扩展,让开发者开箱即用不需要自己搭建基础设施。

官网:Chroma

文档:🏡 Home | Chroma

GitHub:https://github.com/chroma-core/chroma文章来源地址https://www.toymoban.com/news/detail-737209.html

chroma的安装

pip install chromadb

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple chromadb


npm install --save chromadb # 或者 yarn add chromadb
C:\Windows\system32>pip install -i https://pypi.tuna.tsinghua.edu.cn/simple chromadb
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting chromadb
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/3c/ff/ac74735884031a3b9ddf7b1abecee0885ec61660588b1e7c6862bccf5116/chromadb-0.4.14-py3-none-any.whl (448 kB)
     |████████████████████████████████| 448 kB 726 kB/s
Requirement already satisfied: typing-extensions>=4.5.0 in d:\programdata\anaconda3\lib\site-packages (from chromadb) (4.8.0)
Collecting tqdm>=4.65.0
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/00/e5/f12a80907d0884e6dff9c16d0c0114d81b8cd07dc3ae54c5e962cc83037e/tqdm-4.66.1-py3-none-any.whl (78 kB)
     |████████████████████████████████| 78 kB 1.5 MB/s
Collecting grpcio>=1.58.0
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/ed/b2/f37fa2dc8b9942c5d444adee073d683ff23a31a418214cc7d80f53f3285c/grpcio-1.59.0-cp39-cp39-win_amd64.whl (3.7 MB)
     |████████████████████████████████| 3.7 MB 142 kB/s
Collecting pulsar-client>=3.1.0
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/6f/13/b4b3f9282d274bacacf6268b946d00986ab14c35fe9f4113080bc9629ff8/pulsar_client-3.3.0-cp39-cp39-win_amd64.whl (3.4 MB)
     |████████████████████████████████| 3.4 MB 99 kB/s
Requirement already satisfied: onnxruntime>=1.14.1 in d:\programdata\anaconda3\lib\site-packages (from chromadb) (1.14.1)
Collecting chroma-hnswlib==0.7.3
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/f0/f0/e197039fa81a122544fceccda4e6a2d08bdd4a70638f0a88b6b16dbc4adc/chroma_hnswlib-0.7.3-cp39-cp39-win_amd64.whl (150 kB)
     |████████████████████████████████| 150 kB 344 kB/s
Requirement already satisfied: tokenizers>=0.13.2 in d:\programdata\anaconda3\lib\site-packages (from chromadb) (0.13.3)
Collecting pypika>=0.48.9
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/c7/2c/94ed7b91db81d61d7096ac8f2d325ec562fc75e35f3baea8749c85b28784/PyPika-0.48.9.tar.gz (67 kB)
     |████████████████████████████████| 67 kB 468 kB/s
  Installing build dependencies ... done
  Getting requirements to build wheel ... done
    Preparing wheel metadata ... done
Collecting fastapi>=0.95.2
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/db/30/b8d323119c37e15b7fa639e65e0eb7d81eb675ba166ac83e695aad3bd321/fastapi-0.104.0-py3-none-any.whl (92 kB)
     |████████████████████████████████| 92 kB 122 kB/s
Collecting bcrypt>=4.0.1
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/46/81/d8c22cd7e5e1c6a7d48e41a1d1d46c92f17dae70a54d9814f746e6027dec/bcrypt-4.0.1-cp36-abi3-win_amd64.whl (152 kB)
     |████████████████████████████████| 152 kB 192 kB/s
Collecting typer>=0.9.0
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/bf/0e/c68adf10adda05f28a6ed7b9f4cd7b8e07f641b44af88ba72d9c89e4de7a/typer-0.9.0-py3-none-any.whl (45 kB)
     |████████████████████████████████| 45 kB 1.0 MB/s
Collecting overrides>=7.3.1
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/da/28/3fa6ef8297302fc7b3844980b6c5dbc71cdbd4b61e9b2591234214d5ab39/overrides-7.4.0-py3-none-any.whl (17 kB)
Collecting numpy>=1.22.5
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/2d/ed/022fc4106f6d97e41e156201274138e0369b27dbfc8c206034f24ebd97d9/numpy-1.26.1-cp39-cp39-win_amd64.whl (15.8 MB)
     |████████████████████████████████| 15.8 MB 202 kB/s
Requirement already satisfied: pydantic>=1.9 in d:\programdata\anaconda3\lib\site-packages (from chromadb) (2.4.2)
Collecting requests>=2.28
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/70/8e/0e2d847013cb52cd35b38c009bb167a1a26b2ce6cd6965bf26b47bc0bf44/requests-2.31.0-py3-none-any.whl (62 kB)
     |████████████████████████████████| 62 kB 1.5 MB/s
Collecting uvicorn[standard]>=0.18.3
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/79/96/b0882a1c3f7ef3dd86879e041212ae5b62b4bd352320889231cc735a8e8f/uvicorn-0.23.2-py3-none-any.whl (59 kB)
     |████████████████████████████████| 59 kB 3.3 MB/s
Collecting posthog>=2.4.0
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a7/73/35758818228c70348be4c3c66a76653c62e894e0e3c3461453c5341ca926/posthog-3.0.2-py2.py3-none-any.whl (37 kB)
Collecting importlib-resources
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/65/6e/09d8816b5cb7a4006ef8ad1717a2703ad9f331dae9717d9f22488a2d6469/importlib_resources-6.1.0-py3-none-any.whl (33 kB)
Collecting starlette<0.28.0,>=0.27.0
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/58/f8/e2cca22387965584a409795913b774235752be4176d276714e15e1a58884/starlette-0.27.0-py3-none-any.whl (66 kB)
     |████████████████████████████████| 66 kB 1.2 MB/s
Collecting anyio<4.0.0,>=3.7.1
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/19/24/44299477fe7dcc9cb58d0a57d5a7588d6af2ff403fdd2d47a246c91a3246/anyio-3.7.1-py3-none-any.whl (80 kB)
     |████████████████████████████████| 80 kB 1.7 MB/s
Requirement already satisfied: idna>=2.8 in d:\programdata\anaconda3\lib\site-packages (from anyio<4.0.0,>=3.7.1->fastapi>=0.95.2->chromadb) (3.3)
Collecting exceptiongroup
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/ad/83/b71e58666f156a39fb29417e4c8ca4bc7400c0dd4ed9e8842ab54dc8c344/exceptiongroup-1.1.3-py3-none-any.whl (14 kB)
Requirement already satisfied: sniffio>=1.1 in d:\programdata\anaconda3\lib\site-packages (from anyio<4.0.0,>=3.7.1->fastapi>=0.95.2->chromadb) (1.2.0)
Requirement already satisfied: protobuf in d:\programdata\anaconda3\lib\site-packages (from onnxruntime>=1.14.1->chromadb) (3.19.6)
Requirement already satisfied: flatbuffers in d:\programdata\anaconda3\lib\site-packages (from onnxruntime>=1.14.1->chromadb) (2.0.7)
Requirement already satisfied: sympy in d:\programdata\anaconda3\lib\site-packages (from onnxruntime>=1.14.1->chromadb) (1.10.1)
Requirement already satisfied: packaging in d:\programdata\anaconda3\lib\site-packages (from onnxruntime>=1.14.1->chromadb) (21.3)
Requirement already satisfied: coloredlogs in d:\programdata\anaconda3\lib\site-packages (from onnxruntime>=1.14.1->chromadb) (15.0.1)
Requirement already satisfied: six>=1.5 in d:\programdata\anaconda3\lib\site-packages (from posthog>=2.4.0->chromadb) (1.16.0)
Collecting backoff>=1.10.0
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/df/73/b6e24bd22e6720ca8ee9a85a0c4a2971af8497d8f3193fa05390cbd46e09/backoff-2.2.1-py3-none-any.whl (15 kB)
Requirement already satisfied: monotonic>=1.5 in d:\programdata\anaconda3\lib\site-packages (from posthog>=2.4.0->chromadb) (1.5)
Requirement already satisfied: python-dateutil>2.1 in d:\programdata\anaconda3\lib\site-packages (from posthog>=2.4.0->chromadb) (2.8.2)
Requirement already satisfied: certifi in d:\programdata\anaconda3\lib\site-packages (from pulsar-client>=3.1.0->chromadb) (2021.10.8)
Requirement already satisfied: annotated-types>=0.4.0 in d:\programdata\anaconda3\lib\site-packages (from pydantic>=1.9->chromadb) (0.6.0)
Requirement already satisfied: pydantic-core==2.10.1 in d:\programdata\anaconda3\lib\site-packages (from pydantic>=1.9->chromadb) (2.10.1)
Requirement already satisfied: charset-normalizer<4,>=2 in d:\programdata\anaconda3\lib\site-packages (from requests>=2.28->chromadb) (2.0.12)
Requirement already satisfied: urllib3<3,>=1.21.1 in d:\programdata\anaconda3\lib\site-packages (from requests>=2.28->chromadb) (1.26.9)
Requirement already satisfied: colorama in d:\programdata\anaconda3\lib\site-packages (from tqdm>=4.65.0->chromadb) (0.4.4)
Requirement already satisfied: click<9.0.0,>=7.1.1 in d:\programdata\anaconda3\lib\site-packages (from typer>=0.9.0->chromadb) (8.0.4)
Collecting h11>=0.8
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/95/04/ff642e65ad6b90db43e668d70ffb6736436c7ce41fcc549f4e9472234127/h11-0.14.0-py3-none-any.whl (58 kB)
     |████████████████████████████████| 58 kB 1.6 MB/s
Collecting websockets>=10.4
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/f4/3f/65dfa50084a06ab0a05f3ca74195c2c17a1c075b8361327d831ccce0a483/websockets-11.0.3-cp39-cp39-win_amd64.whl (124 kB)
     |████████████████████████████████| 124 kB 1.7 MB/s
Collecting httptools>=0.5.0
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/0a/0d/ca545a8a2831fc3e326fffecab268a2e7775e5ec4d57afc8f5ddc578cbd7/httptools-0.6.1-cp39-cp39-win_amd64.whl (60 kB)
     |████████████████████████████████| 60 kB 1.3 MB/s
Collecting python-dotenv>=0.13
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/44/2f/62ea1c8b593f4e093cc1a7768f0d46112107e790c3e478532329e434f00b/python_dotenv-1.0.0-py3-none-any.whl (19 kB)
Requirement already satisfied: pyyaml>=5.1 in d:\programdata\anaconda3\lib\site-packages (from uvicorn[standard]>=0.18.3->chromadb) (6.0)
Collecting watchfiles>=0.13
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/ef/c0/737ddb4c97efd7e4c98852973ca80d7fab65811d6c4d3a64182333d455b0/watchfiles-0.21.0-cp39-none-win_amd64.whl (280 kB)
     |████████████████████████████████| 280 kB 1.7 MB/s
Requirement already satisfied: humanfriendly>=9.1 in d:\programdata\anaconda3\lib\site-packages (from coloredlogs->onnxruntime>=1.14.1->chromadb) (10.0)
Requirement already satisfied: pyreadline3 in d:\programdata\anaconda3\lib\site-packages (from humanfriendly>=9.1->coloredlogs->onnxruntime>=1.14.1->chromadb) (3.4.1)
Requirement already satisfied: zipp>=3.1.0 in d:\programdata\anaconda3\lib\site-packages (from importlib-resources->chromadb) (3.7.0)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in d:\programdata\anaconda3\lib\site-packages (from packaging->onnxruntime>=1.14.1->chromadb) (3.0.4)
Requirement already satisfied: mpmath>=0.19 in d:\programdata\anaconda3\lib\site-packages (from sympy->onnxruntime>=1.14.1->chromadb) (1.2.1)
Building wheels for collected packages: pypika
  Building wheel for pypika (PEP 517) ... done
  Created wheel for pypika: filename=PyPika-0.48.9-py2.py3-none-any.whl size=53835 sha256=211a200d50e727e0f22f68bd12cee283f29544900120b047b61d3826d1424f27
  Stored in directory: c:\users\99386\appdata\local\pip\cache\wheels\3b\17\34\0b716a7c87f148d258492c55fe890d051f5ca7bcf9e045e582
Successfully built pypika
Installing collected packages: exceptiongroup, h11, anyio, websockets, watchfiles, uvicorn, starlette, requests, python-dotenv, numpy, httptools, backoff, typer, tqdm, pypika, pulsar-client, posthog, overrides, importlib-resources, grpcio, fastapi, chroma-hnswlib, bcrypt, chromadb
  Attempting uninstall: anyio
    Found existing installation: anyio 3.5.0
    Uninstalling anyio-3.5.0:
      Successfully uninstalled anyio-3.5.0
  Attempting uninstall: requests
    Found existing installation: requests 2.27.1
    Uninstalling requests-2.27.1:
      Successfully uninstalled requests-2.27.1
  Attempting uninstall: numpy
    Found existing installation: numpy 1.21.6
    Uninstalling numpy-1.21.6:
      Successfully uninstalled numpy-1.21.6
  Attempting uninstall: typer
    Found existing installation: typer 0.4.2
    Uninstalling typer-0.4.2:
      Successfully uninstalled typer-0.4.2
  Attempting uninstall: tqdm
    Found existing installation: tqdm 4.63.2
    Uninstalling tqdm-4.63.2:
      Successfully uninstalled tqdm-4.63.2
  Attempting uninstall: grpcio
    Found existing installation: grpcio 1.42.0
    Uninstalling grpcio-1.42.0:
      Successfully uninstalled grpcio-1.42.0
  Attempting uninstall: bcrypt
    Found existing installation: bcrypt 3.2.0
    Uninstalling bcrypt-3.2.0:
      Successfully uninstalled bcrypt-3.2.0
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
daal4py 2021.5.0 requires daal==2021.4.0, which is not installed.
conda-repo-cli 1.0.4 requires pathlib, which is not installed.
anaconda-project 0.10.2 requires ruamel-yaml, which is not installed.
xarray 2023.4.2 requires pandas>=1.4, but you have pandas 1.3.5 which is incompatible.
thinc 8.1.10 requires pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4, but you have pydantic 2.4.2 which is incompatible.
streamlit 1.24.0 requires protobuf<5,>=3.20, but you have protobuf 3.19.6 which is incompatible.
spacy 3.5.3 requires pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4, but you have pydantic 2.4.2 which is incompatible.
spacy 3.5.3 requires typer<0.8.0,>=0.3.0, but you have typer 0.9.0 which is incompatible.
scipy 1.8.0 requires numpy<1.25.0,>=1.17.3, but you have numpy 1.26.1 which is incompatible.
onnx 1.14.0 requires protobuf>=3.20.2, but you have protobuf 3.19.6 which is incompatible.
numba 0.55.1 requires numpy<1.22,>=1.18, but you have numpy 1.26.1 which is incompatible.
ludwig 0.7.4 requires transformers<4.22,>=4.10.1, but you have transformers 4.28.1 which is incompatible.
jupyter-server 1.13.5 requires pywinpty<2; os_name == "nt", but you have pywinpty 2.0.2 which is incompatible.
en-core-web-sm 3.0.0 requires spacy<3.1.0,>=3.0.0, but you have spacy 3.5.3 which is incompatible.
Successfully installed anyio-3.7.1 backoff-2.2.1 bcrypt-4.0.1 chroma-hnswlib-0.7.3 chromadb-0.4.14 exceptiongroup-1.1.3 fastapi-0.104.0 grpcio-1.59.0 h11-0.14.0 httptools-0.6.1 importlib-resources-6.1.0 numpy-1.26.1 overrides-7.4.0 posthog-3.0.2 pulsar-client-3.3.0 pypika-0.48.9 python-dotenv-1.0.0 requests-2.31.0 starlette-0.27.0 tqdm-4.66.1 typer-0.9.0 uvicorn-0.23.2 watchfiles-0.21.0 websockets-11.0.3

chroma的使用方法

1、基础用法

import chromadb
# setup Chroma in-memory, for easy prototyping. Can add persistence easily!
client = chromadb.Client()

# Create collection. get_collection, get_or_create_collection, delete_collection also available!
collection = client.create_collection("all-my-documents")

# Add docs to the collection. Can also update and delete. Row-based API coming soon!
collection.add(
    documents=["This is document1", "This is document2"], # we handle tokenization, embedding, and indexing automatically. You can skip that and add your own embeddings as well
    metadatas=[{"source": "notion"}, {"source": "google-docs"}], # filter on these!
    ids=["doc1", "doc2"], # unique for each doc
)

# Query/search 2 most similar results. You can also .get by id
results = collection.query(
    query_texts=["This is a query document"],
    n_results=2,
    # where={"metadata_field": "is_equal_to_this"}, # optional filter
    # where_document={"$contains":"search_string"}  # optional filter
)

到了这里,关于VDB之Chroma:Chroma/chromadb(一款优秀的向量数据库)的简介、安装、使用方法之详细攻略的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用Langchain+GPT+向量数据库chromadb 来创建文档对话机器人

    使用Langchain+GPT+向量数据库chromadb 来创建文档对话机器人 文件存放地址 参考: https://python.langchain.com/docs/use_cases/chatbots https://python.langchain.com/docs/integrations/vectorstores/chroma https://blog.csdn.net/v_JULY_v/article/details/131552592?ops_request_misc=%257B%2522request%255Fid%2522%253A%252216945020581680022659096

    2024年02月03日
    浏览(45)
  • (一)AI本地知识库问答(可运行):LangChain+Chroma向量数据库+OpenAi大模型

    只需要看config目录下的config.py,data目录下的txt知识库文件,db向量数据库文件在持久化部署后会自动生成,route下的app.py,scripts目录下的Chroma向量库持久化部署.py这几个就可以,scripts目录下的考勤问答.py和test目录下都是单独的自己测试的小代码,可以不用关注 因为运行需要

    2024年02月03日
    浏览(54)
  • 什么是向量数据库?向量数据库工作原理?向量数据库解决方案?

    向量数据库是一种专门用于存储和处理向量数据的数据库系统。向量数据是指具有多维度属性的数据,例如图片、音频、视频、自然语言文本等。传统的关系型数据库通常不擅长处理向量数据,因为它们需要将数据映射成结构化的表格形式,而向量数据的维度较高、结构复杂

    2024年02月15日
    浏览(59)
  • 《向量数据库指南》:向量数据库Pinecone如何集成数据湖

    目录 为什么选择Databricks? 为什么选择Pinecone? 设置Spark集群 环境设置 将数据集加载到分区中 创建将文本转换为嵌入的函数 将UDF应用于数据 更新嵌入 摘要 使用Databricks和Pinecone在规模上创建和索引向量嵌入

    2024年02月15日
    浏览(40)
  • 【入门篇】ClickHouse最优秀的开源列式存储数据库

    ClickHouse是一个用于联机分析(OLAP)的列式数据库管理系统(DBMS)。 在传统的行式数据库系统中,数据按如下顺序存储: Row WatchID JavaEnable Title GoodEvent EventTime #0 89354350662 1 Investor Relations 1 2016-05-18 05:19:20 #1 90329509958 0 Contact us 1 2016-05-18 08:10:20 #2 89953706054 1 Mission 1 2016-05-18 07:38:00 #N …

    2024年02月04日
    浏览(43)
  • 《向量数据库指南》——宏观解读向量数据库Milvus Cloud

    宏观解读向量数据库 如今,强大的机器学习模型配合 Milvus 等向量数据库的模式已经为电子商务、推荐系统、语义检索、计算机安全、制药等领域和应用场景带来变革。而对于用户而言,除了足够多的应用场景,向量数据库还需要具备更多重要的特性,包括: 可灵活扩展、支

    2024年02月07日
    浏览(49)
  • 《向量数据库》——向量数据库Milvus Cloud 和Dify比较

    Zilliz Cloud v.s. Dify Dify 作为开源的 LLMs App 技术栈,在此前已支持丰富多元的大型语言模型的接入,除了 OpenAI、Anthropic、Azure OpenAI、Hugging face、Replicate 等全球顶尖模型及模型托管平台,也完成了国内主流的各大模型支持(如文心一言、智谱 AI 等)。 而 Zilliz Cloud  和 Milvus 则是

    2024年02月08日
    浏览(62)
  • 《向量数据库指南》:向量数据库Pinecone如何集成LangChain (一)

    目录 LangChain中的检索增强 建立知识库 欢迎使用Pinecone和LangChain的集成指南。本文档涵盖了将高性能向量数据库Pinecone与基于大型语言模型(LLMs)构建应用程序的框架LangChain集成的步骤。   Pinecone使开发人员能够基于向量相似性搜索构建可扩展的实时推荐和搜索系统。另一方

    2024年02月15日
    浏览(41)
  • AntDB数据库荣获 “2023年信创物联网优秀服务商”

    日前,在2023世界数字经济大会暨第十三届智博会 · 2023京甬信创物联网产融对接会上, AntDB数据库再获殊荣,获评“2023年信创物联网优秀服务商” 。 图1:2023年信创物联网优秀服务商颁奖现场 信创物联网是信息技术应用创新与物联网的结合 ,其以物联网技术为基础,能够

    2024年02月06日
    浏览(44)
  • 《向量数据库指南》——开源框架NVIDIA Merlin & 向量数据库Milvus

    推荐系统 pipeline 中至关重要的一环便是为用户检索并找到最相关的商品。为了实现这一目标,通常会使用低维向量(embedding)表示商品,使用数据库存储及索引数据,最终对数据库中数据进行近似最近邻(ANN)搜索。这些向量表示是通过深度学习模型获取的,而这些深度学习

    2024年02月05日
    浏览(58)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包