原文链接:SegNet
SegNet的引入
SegNet是2016年cvpr由Cambridge提出旨在解决自动驾驶或者智能机器人的图像语义分割深度网络,开放源码,基于caffe框架。SegNet基于FCN,修改VGG-16网络得到的语义分割网络,有两种版本的SegNet,分别为SegNet与Bayesian SegNet,同时SegNet作者根据网络的深度提供了一个basic版(浅网络)。
1.SegNet的创新点
SegNet与U-net网络相似,主要的区别是提出了记录池化的位置,反池化时恢复。不再进行拼接操作,直接进行反卷积。
作用:
为了更好的保留边界特征信息。采用了索引的方式进行上采样。即在进行池化操作时,记录池化所取值的位置,在上采样时直接用当时记录的位置进行UpPool(反池化)
2.SegNet的模型特点
1. backbone: vgg16
2. encoder-decoder,左右网络层对称。
Encoder过程中,通过卷积提取特征,SegNet使用的卷积为same卷积,即卷积后保持图像原始尺寸;在Decoder过程中,同样使用same卷积,不过卷积的作用是为upsampling变大的图像丰富信息,使得在Pooling过程丢失的信息可以通过学习在Decoder得到。bn层对训练图像进行批标准化(BatchNormalization),加速模型的学习。
decoder中,对缩小后的特征图进行上采样,然后对上采样后的图像进行卷积处理,来完善图像中物体的几何形状,将encoder中获得的特征还原到原来图像的具体的像素点上。
3. 带索引的最大池化上采样。
3.如何记录池化的位置?
Pooling在CNN中是使得图片缩小一半的手段,通常有max与mean两种Pooling方式,下图所示的是max Pooling。max Pooling是使用一个2x2的filter,取出这4个权重最大的一个,原图大小为4x4,Pooling之后大小为2x2,原图左上角粉色的四个数,最后只剩最大的6,这就是max的意思。
在SegNet中的Pooling与其他Pooling多了一个index功能(该文章亮点之一),也就是每次Pooling,都会保存通过max选出的权值在2x2 filter中的相对位置,对于上图的6来说,6在粉色2x2 filter中的位置为(1,1)(index从0开始),黄色的3的index为(0,0)。同时,从网络框架图可以看到绿色的pooling与红色的upsampling通过pool indices相连,实际上是pooling后的indices输出到对应的upsampling(因为网络是对称的,所以第1次的pooling对应最后1次的upsamping,如此类推)。
Upsamping就是Pooling的逆过程(index在Upsampling过程中发挥作用),Upsamping使得图片变大2倍。我们清楚的知道Pooling之后,每个filter会丢失了3个权重,这些权重是无法复原的,但是在Upsamping层中可以得到在Pooling中相对Pooling filter的位置。所以Upsampling中先对输入的特征图放大两倍,然后把输入特征图的数据根据Pooling indices放入,下图所示,Unpooling对应上述的Upsampling,switch variables对应Pooling indices。
对比FCN可以发现SegNet在Unpooling时用index信息,直接将数据放回对应位置,后面再接Conv训练学习。这个上采样不需要训练学习(只是占用了一些存储空间)。反观FCN则是用transposed convolution策略,即将feature 反卷积后得到upsampling,这一过程需要学习,同时将encoder阶段对应的feature做通道降维,使得通道维度和upsampling相同,这样就能做像素相加得到最终的decoder输出.
1.Deconvolution
pooling&Upsampling示意图中右边的Upsampling可以知道,2x2的输入,变成4x4的图,但是除了被记住位置的Pooling indices,其他位置的权值为0,因为数据已经被pooling走了。因此,SegNet使用的反卷积在这里用于填充缺失的内容,因此这里的反卷积与卷积是一模一样,在网络框架图中跟随Upsampling层后面的是也是卷积层。
2.Output
在网络框架中,SegNet,最后一个卷积层会输出所有的类别(包括other类),网络最后加上一个softmax层,由于是end to end, 所以softmax需要求出所有每一个像素在所有类别最大的概率,最为该像素的label,最终完成图像像素级别的分类。
3.Bayesian SegNet
可以知道,在SeNet中最后每个像素都会对每一类的概率进行计算,再通过Softmat输出概率最大的一个,然后这个像素点就认为是这一类别,对应的概率就是这一像素属于该类的概率。这种由原因到结果的推导,可以称为先验概率,任何先验概率使用都会出现一个问题,不能知道这一结果的可靠性,即便先验概率非常大,但是对于不同的样本,先验概率无法保证一定正确。正是如此,才需要有从结果寻找原因的贝叶斯概率,即后验概率,它能给出结果的可信程度,即置信度。Bayesian SegNet正是通过后验概率,告诉我们图像语义分割结果的置信度是多少。Bayesian SegNet如下图所示。
对比两框架图,并没有发现Bayesian SegNet与SegNet的差别,事实上,从网络变化的角度看,Bayesian SegNet只是在卷积层中多加了一个DropOut层,其作用后面解释。最右边的两个图Segmentation与Model Uncertainty,就是像素点语义分割输出与其不确定度(颜色越深代表不确定性越大,即置信度越低)。
4.DropOut
在传统神经网络中DropOut层的主要作用是防止权值过度拟合,增强学习能力。DropOut层的原理是,输入经过DropOut层之后,随机使部分神经元不工作(权值为0),即只激活部分神经元,结果是这次迭代的向前和向后传播只有部分权值得到学习,即改变权值。
因此,DropOut层服从二项分布,结果不是0,就是1,在CNN中可以设定其为0或1的概率来到达每次只让百分之几的神经元参与训练或者测试。在Bayesian SegNet中,SegNet作者把概率设置为0.5,即每次只有一半的神经元在工作。因为每次只训练部分权值,可以很清楚地知道,DropOut层会导致学习速度减慢。文章来源:https://www.toymoban.com/news/detail-737212.html
5.Use Bayesian SegNet
在Bayesian SegNet中通过DropOut层实现多次采样,多次采样的样本值为最后输出,方差最为其不确定度,方差越大不确定度越大。所以在使用Bayesian SegNet预测时,需要多次向前传播采样才能够得到关于分类不确定度的灰度图,Bayesian SegNet预测如下图所示。
第一行为输入图像,第二行为ground truth,第三行为Bayesian SegNet语义分割输出,第四行为不确定灰度图。可以看到,
1.对于分类的边界位置,不确定性较大,即其置信度较低。
2.对于图像语义分割错误的地方,置信度也较低。
3.对于难以区分的类别,例如人与自行车,road与pavement,两者如果有相互重叠,不确定度会增加。文章来源地址https://www.toymoban.com/news/detail-737212.html
到了这里,关于深度学习之图像分割—— SegNet基本思想和网络结构以及论文补充的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!