二阶常系数非齐次线性微分方程@经典类型1的解

这篇具有很好参考价值的文章主要介绍了二阶常系数非齐次线性微分方程@经典类型1的解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

abstract

  • 二阶常系数非齐次线性微分方程
  • 待定系数法可解决的经典类型1及其解法总结与应用
    • 本文给出类型1为什么可以通过待定求出特解,并且待定函数要设成什么形式
    • 推理过程有一定工作量,而在应用中只需要记住可以用待定系数法求解,以及待定系数函数的形式公式以及公式中各部分的确定方法即可

二阶常系数非齐次线性微分方程

  • 二阶常系数非齐次线性微分方程的一般形式为 y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y′′+py+qy=f(x)(1),其中 p , q p,q p,q是常数

  • 求方程(1)的通解,归结为求对应齐次方程: y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y′′+py+qy=0(2)的通解 Y ( x ) Y(x) Y(x)和一个(1)特解 y ∗ ( x ) y^*(x) y(x);则 Y ( x ) + y ∗ ( x ) Y(x)+y^*(x) Y(x)+y(x)为(1)的通解

  • 对于非齐次的二阶常系数线性微分方程,仅有限的类型(以 f ( x ) f(x) f(x)的不同类型作区分)是容易解决的,这里介绍两种类型

待定系数法可解类型

  • f ( x ) f(x) f(x)取两种特殊类型的函数时,可以不用积分的方法求 y ∗ y^* y,而是通过待定系数法
  • 两种形式分别为:
    • f ( x ) = e λ x P m ( x ) f(x)=e^{\lambda{x}}P_{m}(x) f(x)=eλxPm(x), f ( x ) f(x) f(x)= e λ x ( P l ( x ) cos ⁡ ω x + P n ( x ) sin ⁡ ω x ) e^{\lambda{x}}(P_{l}(x)\cos{\omega}x+P_{n}(x)\sin{\omega{x}}) eλx(Pl(x)cosωx+Pn(x)sinωx)

类型1

  • f ( x ) f(x) f(x)= e λ x P m ( x ) e^{\lambda{x}}P_{m}(x) eλxPm(x)(2),其中 λ \lambda λ是常数, P m ( x ) P_{m}(x) Pm(x) x x x的一个** m m m次**多项式(设为 ∑ i = 0 m a i x i \sum_{i=0}^{m}a_ix^{i} i=0maixi)

    • 此时方程(1)表示为 y ′ ′ + p y ′ + q y y''+py'+qy y′′+py+qy= e λ x P m ( x ) e^{\lambda{x}}P_{m}(x) eλxPm(x)(2-1)
      • λ = 0 \lambda=0 λ=0时, f ( x ) = P m ( x ) f(x)=P_m(x) f(x)=Pm(x),方程(2-1)进一步改写为 y ′ ′ + p y ′ + q y y''+py'+qy y′′+py+qy= P m ( x ) P_{m}(x) Pm(x)(2-2)
    • 对式(2)求导
      • f ′ ( x ) f'(x) f(x)= λ e λ x P m ( x ) \lambda e^{\lambda{x}}P_{m}(x) λeλxPm(x)+ e λ x P m ′ ( x ) e^{\lambda{x}}P_{m}'(x) eλxPm(x)= e λ x ( λ P m ( x ) + P m ′ ( x ) ) e^{\lambda{x}}(\lambda{P_{m}(x)}+P_{m}'(x)) eλx(λPm(x)+Pm(x))其中 Q m = λ P m ( x ) + P m ′ ( x ) Q_{m}=\lambda{P_{m}(x)}+P_{m}'(x) Qm=λPm(x)+Pm(x)仍然是 m m m次多项式,继续求高阶导数,得到相仿的结论,即
        • f ( n ) ( x ) f^{(n)}(x) f(n)(x)= e λ x Q m [ n ] ( x ) e^{\lambda{x}}Q_{m}^{[n]}(x) eλxQm[n](x),其中 Q m [ n ] ( x ) Q_{m}^{[n]}(x) Qm[n](x)表示 f ( x ) f(x) f(x) n n n阶导数包含的 m m m阶多项式
      • 此类型的特点是,多项式函数和指数型函数的乘积的导数仍然是多项式函数和指数型函数的乘积,再官产方程(2-1),这恰好可以并为等号右端形式,即 e λ x P m ( x ) e^{\lambda{x}}P_{m}(x) eλxPm(x)
    • 由此可以推测 y ∗ y^* y= Q ( x ) e λ x Q(x)e^{\lambda{x}} Q(x)eλx(3)可能是方程(1)的特解[待定系数法]
      • 其中 Q ( x ) Q(x) Q(x)是某个多项式
    • 对(3)求导, y ∗ ′ y^{*'} y= Q ′ ( x ) e λ x Q'(x)e^{\lambda{x}} Q(x)eλx+ Q ( x ) λ e λ x Q(x)\lambda{e^{\lambda{x}}} Q(x)λeλx= e λ x ( Q ′ ( x ) + Q ( x ) λ ) e^{\lambda{x}}(Q'(x)+Q(x)\lambda) eλx(Q(x)+Q(x)λ)(3-1)
      • y ∗ ′ ′ y^{*''} y′′= λ e λ x ( ( Q ′ ( x ) + Q ( x ) λ ) \lambda e^{\lambda{x}}((Q'(x)+Q(x)\lambda) λeλx((Q(x)+Q(x)λ)+ e λ x ( Q ′ ′ ( x ) + λ Q ′ ( x ) ) e^{\lambda{x}}(Q''(x)+\lambda Q'(x)) eλx(Q′′(x)+λQ(x))= e λ x ( λ 2 Q ( x ) + 2 λ Q ′ ( x ) + Q ′ ′ ( x ) ) e^{\lambda{x}}(\lambda^2{Q(x)}+2\lambda{Q'(x)}+Q''(x)) eλx(λ2Q(x)+2λQ(x)+Q′′(x))(3-2)
    • 将(3,3-1,3-2)代入方程(2-1),得 e λ x ( λ 2 Q ( x ) + 2 λ Q ′ ( x ) + Q ′ ′ ( x ) ) e^{\lambda{x}}(\lambda^2{Q(x)}+2\lambda{Q'(x)}+Q''(x)) eλx(λ2Q(x)+2λQ(x)+Q′′(x))+ p e λ x ( Q ′ ( x ) + Q ( x ) λ ) pe^{\lambda{x}}(Q'(x)+Q(x)\lambda) peλx(Q(x)+Q(x)λ)+ q Q ( x ) e λ x qQ(x)e^{\lambda{x}} qQ(x)eλx= e λ x P m ( x ) e^{\lambda{x}}P_{m}(x) eλxPm(x),整理得 Q ′ ′ ( x ) + ( 2 λ + p ) Q ′ ( x ) + ( λ 2 + p λ + q ) Q ( x ) Q''(x)+(2\lambda+p)Q'(x)+(\lambda^2+p\lambda+q)Q(x) Q′′(x)+(2λ+p)Q(x)+(λ2+pλ+q)Q(x)= P m ( x ) P_{m}(x) Pm(x)(4)
  • 根据 λ \lambda λ与方程(1)的特征方程 ( r 2 + p r + q = 0 ) (r^2+pr+q=0) (r2+pr+q=0)(5)的根(特征根)关系,分为:不是特征根,单根,重根,这三种情形讨论

    • λ \lambda λ不是(5)的根,则 λ 2 + p λ + q ≠ 0 \lambda^2+p\lambda+q\neq{0} λ2+pλ+q=0(5-1),

      • 由于 P m ( x ) P_{m}(x) Pm(x) m m m次多项式,要使(4)式两边相等,则 Q ( x ) Q(x) Q(x)必须也是 m m m次多项式,记为 Q ( x ) = Q m ( x ) Q(x)=Q_{m}(x) Q(x)=Qm(x)= ∑ i = 0 m b i x i \sum_{i=0}^{m}b_ix^{i} i=0mbixi(6)
      • 将(6)代入方程(4),比较两边同次幂的系数,得到 0 ∼ m 0\sim{m} 0m次共 m + 1 m+1 m+1个方程
      • 解这 m + 1 m+1 m+1个方程,可得 b 0 , ⋯   , b m b_0,\cdots,b_m b0,,bm
      • 代入(3),从而得到(2-1)的特解
    • λ \lambda λ是(5)的单根(两个互异根中的一个),则 λ 2 + p λ + q = 0 \lambda^2+p\lambda+q={0} λ2+pλ+q=0(6-1)

      • 此处 λ \lambda λ是单根,设另一根是 λ ‾ \overline\lambda λ;由韦达定理: λ + λ ‾ = − p \lambda+\overline{\lambda}=-p λ+λ=p,而 λ + λ ≠ λ + λ ‾ \lambda+\lambda\neq{\lambda+\overline{\lambda}} λ+λ=λ+λ,所以 2 λ ≠ − p 2\lambda\neq{-p} 2λ=p,即 2 λ + p ≠ 0 2\lambda+p\neq{0} 2λ+p=0(7)

      • 此时方程(4)改写为 Q ′ ′ ( x ) + ( 2 λ + p ) Q ′ ( x ) Q''(x)+(2\lambda+p)Q'(x) Q′′(x)+(2λ+p)Q(x)= P m ( x ) P_{m}(x) Pm(x);因此 Q ′ ( x ) Q'(x) Q(x)必须是 m m m次多项式;相应的, Q ( x ) Q(x) Q(x)就得是 m + 1 m+1 m+1次多项式

      • Q ( x ) = x Q m ( x ) Q(x)=xQ_m(x) Q(x)=xQm(x)(8);仍然可以用系数比较法确定出 Q m ( x ) Q_{m}(x) Qm(x)的系数 b 0 , b 1 , ⋯   , b m b_0,b_1,\cdots,b_m b0,b1,,bm;就可以得出 Q m ( x ) Q_m(x) Qm(x),代入(8)得出 Q ( x ) Q(x) Q(x),再代入(3),得方程(2-1)的特解

    • λ \lambda λ是(5)的重根,此是也有(6-1)成立,并且 2 λ + p = 0 2\lambda+p=0 2λ+p=0(8-1)

      • 此时方程(4)改写为 Q ′ ′ ( x ) = P m ( x ) Q''(x)=P_{m}(x) Q′′(x)=Pm(x)
      • 要使方程(4)两端恒等,必有 Q ′ ′ ( x ) Q''(x) Q′′(x) m m m次多项式,从而可以令 Q ( x ) = x 2 Q m ( x ) Q(x)=x^2Q_{m}(x) Q(x)=x2Qm(x)
      • 同样使用系数比较法确定出 Q m ( x ) Q_{m}(x) Qm(x)的系数,从而得出 Q ( x ) Q(x) Q(x),最后代入(3)得出(2-1)的特解
  • 上述类型1的结论可知,方程(1)确实可以使用待定系数法求特解,该特解可以设为 y ∗ y^* y= x k Q m ( x ) e λ x x^kQ_{m}(x)e^{\lambda{x}} xkQm(x)eλx,并且保证这个待定形式是可求解且正确的👺文章来源地址https://www.toymoban.com/news/detail-737473.html

小结

  • 二阶常系数非齐次线性微分方程 y ′ ′ + p y ′ + q y y''+py'+qy y′′+py+qy= P m ( x ) e λ x P_m(x)e^{\lambda{x}} Pm(x)eλx(1)具有形如 y ∗ = x k Q m ( x ) e λ x y^*=x^kQ_{m}(x)e^{\lambda{x}} y=xkQm(x)eλx特解, ( k = 0 , 1 , 2 ) (k=0,1,2) (k=0,1,2)
    • 其中 Q m ( x ) Q_{m}(x) Qm(x), P m ( x ) P_m(x) Pm(x)是同为 m m m次多项式, Q m ( x ) Q_{m}(x) Qm(x) m + 1 m+1 m+1个系数由系数比较法构造 m + 1 m+1 m+1个方程分别求出
    • k k k按照 λ \lambda λ是方程(1)的特征方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0(2)的根的重数决定的,
      • 0 0 0重根, k = 0 k=0 k=0;(表示 λ \lambda λ不是方程(2)的根的简称)
      • 1 1 1重根, k = 1 k=1 k=1
      • 2 2 2重根, k = 2 k=2 k=2

  • y ′ ′ − 2 y ′ − 3 y y''-2y'-3y y′′2y3y= 3 x + 1 3x+1 3x+1(1)的一个特解
    • 方程类型分析:方程(1)是常系数非齐次线性微分方程中的经典类型1
      • f ( x ) f(x) f(x)= 3 x + 1 3x+1 3x+1= e 0 x ( 3 x + 1 ) e^{0x}(3x+1) e0x(3x+1),即对应类型1问题模型中有(1-1)
        • λ = 0 \lambda=0 λ=0;
        • P m ( x ) P_m(x) Pm(x)是一次多项式 3 x + 1 3x+1 3x+1
        • m = 1 m=1 m=1
    • 特征方程为 r 2 − 2 r − 3 = 0 r^2-2r-3=0 r22r3=0(2)
    • 检查 λ \lambda λ和(2)的根的关系: λ = 0 \lambda=0 λ=0不是(2)的根,
    • 应用类型1的待定系数法结论可知,方程(1)的特解可以设为 y ∗ y^* y= x k Q m ( x ) e λ x x^kQ_{m}(x)e^{\lambda{x}} xkQm(x)eλx,代入(1-1),可以具体为 y ∗ y^* y= Q 1 ( x ) Q_{1}(x) Q1(x)= b 0 x + b 1 b_0{x}+b_1 b0x+b1(3)( Q 1 ( x ) Q_1(x) Q1(x)是一次多项式)
    • 将(3)代入到方程(1): − 2 b 0 − 3 ( b 0 x + b 1 ) -2b_0-3(b_0{x}+b_1) 2b03(b0x+b1)= 3 x + 1 3x+1 3x+1,整理得 − 3 b 0 x − 2 b 0 − 3 b 1 -3b_0x-2b_0-3b_1 3b0x2b03b1= 3 x − 1 3x-1 3x1(4)
    • 由系数比较法, − 3 b 0 = 3 -3b_0=3 3b0=3; − 2 b 0 − 3 b 1 -2b_0-3b_1 2b03b1= 1 1 1,解得 b 0 = − 1 b_0=-1 b0=1; b 1 = 1 3 b_1=\frac{1}{3} b1=31,从而得到特解为 y ∗ = − x + 1 3 y^*=-x+\frac{1}{3} y=x+31

到了这里,关于二阶常系数非齐次线性微分方程@经典类型1的解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • RC电路一阶线性微分方程

    电路中一阶线性微分方程 在高等数学中,一阶微分方程求解过程需要先算出齐次的通解,然后再根据初始条件算出特解,计算与推理过程很是复杂。在我们学习电路的时候再遇到这个东西时,会因为之前复杂的求解方式严重打击自信心,加之老师说数学在电路中应用是非常广

    2023年04月18日
    浏览(25)
  • PINN解偏微分方程实例2(一维非线性薛定谔方程)

       考虑偏微分方程如下: i h t + 0.5 h x x + ∣ h ∣ 2 h = 0 h ( 0 , x ) = 2 s e c h ( x ) h ( t , − 5 ) = h ( t , 5 ) h x ( t , − 5 ) = h x ( t , 5 ) begin{align} begin{aligned} ih_t + 0.5h_{xx} + |h|^2h = 0 \\\\ h(0,x) = 2 sech(x) \\\\ h(t,-5) = h(t,5) \\\\ h_x(t,-5) = h_x(t,5) end{aligned} end{align} ​ i h t ​ + 0.5 h xx ​ + ∣ h ∣

    2024年02月01日
    浏览(25)
  • MATLAB 之 非线性方程数值求解、最优化问题求解和常微分方程初值问题的数值求解

    非线性方程的求根方法很多,常用的有牛顿迭代法,但该方法需要求原方程的导数,而在实际运算中这一条件有时 是不能满足的,所以又出现了弦截法、二分法等其他方法。 在 MATLAB 中,非线性方程的求解和最优化问题往往需要调用最优化工具箱来解决。优化工具箱提供了一

    2024年02月08日
    浏览(40)
  • 0702可分类变量的微分方程-微分方程

    本节至第四节我们学习的都是一阶微分方程 ​ y ′ = f ( x , y ) y^{\\\'}=f(x,y) y ′ = f ( x , y ) (2-1) 一阶微分方程对称形式 p ( x , y ) d x + Q ( x , y ) d y = 0 ( 2 − 2 ) p(x,y)dx+Q(x,y)dy=0qquad (2-2) p ( x , y ) d x + Q ( x , y ) d y = 0 ( 2 − 2 ) 若以x为自变量,y为因变量,则 d y d x = − P ( x , y ) Q (

    2024年02月04日
    浏览(38)
  • 常微分方程建模R包ecode(一)——构建常微分方程系统

    常微分方程在诸多研究领域中有着广泛应用,本文希望向大家介绍笔者于近期开发的R包 ecode ,该包 采用简洁易懂的语法帮助大家在R环境中构建常微分方程 ,并便利地调用R图形接口,研究常微分方程系统的相速矢量场、平衡点、稳定点等解析性质,或进行数值模拟,进行敏

    2024年02月16日
    浏览(26)
  • 【数学建模】常微分,偏微分方程

    普通边界   已知t0时刻的初值    ode45()  龙格-库塔法 一阶,高阶都一样 如下: s(1) = y , s(2)=y\\\'  s(3) = x , s(4)=x\\\'   分段边界 非匿名函数    手写改进的ode45()函数代码 复杂边界值(即已知初始值,也知道末尾值),用bvp4c()函数 1. pdepe()函数 椭圆-抛物线型 控制方程  左边界

    2024年02月09日
    浏览(28)
  • (矩阵)一阶微分方程和伯努利方程

    伯努利方程的标准形式: 伯努利方程解法: 方程两边同时除以y的n次, 做变量替换y-z: 转换为线性微分方程: 最后换回原来的变量即可得到伯努利方程。 一阶线性微分方程的标准形式: 当Q(x)=0,为齐次方程;当Q(x)≠0,为非齐次方程。 已知如下矩阵,求解一阶线性微分方

    2024年02月05日
    浏览(40)
  • 一阶常微分方程

    第一次写博客记录自己的学习过程,写的不好希望大家斧正。 讲的更多的是常微分方程的解法的理解,也是我在学习中遇到各种证明的关键点,希望通过记录博客深化对于证明的理解,建立起数学思维,而不是知其然而不知其所以然。因此阅读中需要读者有一定的基础,与实

    2024年02月05日
    浏览(29)
  • 高等数学(微分方程)

    x y ′ ′ ′ + ( y ′ ) 3 + y 4 xy\\\'\\\'\\\'+(y\\\')^3+y^4 x y ′′′ + ( y ′ ) 3 + y 4 quad quad 三阶 y ′ = 2 x y\\\'=2x y ′ = 2 x quad quad quad quad quad quad 一阶 d y = 2 x d x dy=2xdx d y = 2 x d x quad quad quad quad 一阶 ( y ′ ′ ) 5 + 2 y ′ = 3 (y\\\'\\\')^5+2y\\\'=3 ( y ′′ ) 5 + 2 y ′ = 3 quad quad quad 二阶 quad 例1: 已知

    2024年02月10日
    浏览(31)
  • matlab解微分方程

    f=@(变量) 表达式; x1为2 3 4 5;x2为3 4 5 6的情况下求解函数f的值 用“dsolve” step1: 申明自变量和因变量 syms y(x) step2:编程 得到: step1: 申明自变量和因变量 syms y(x) step2:编程 得到 step1.写函数文件 step2.主函数 相当于定义了一个新向量y,然后列 匿名函数 ,方程的 左边都是一阶

    2024年02月13日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包