Pycharm安装jupyter和d2l

这篇具有很好参考价值的文章主要介绍了Pycharm安装jupyter和d2l。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

安装 jupyter:

jupyter是d2l的依赖库,没有它就用不了d2l

pycharm中端输入pip install jupyter安装若失败则:

若网速过慢,则更改镜像源再下载:

pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
pip config set global.install.trusted-host mirrors.aliyun.com

若还是下载失败则是由于电脑有外网APN,也就是说是科学上网的原因导致的:

Pycharm安装jupyter和d2l,pycharm,jupyter,ide
Pycharm安装jupyter和d2l,pycharm,jupyter,ide
关掉后再输入命令下载即可。

安装d2l:

先下载whl: 链接

Pycharm安装jupyter和d2l,pycharm,jupyter,ide
点击下载地址下载

再找项目位置:

在解释器里可以看
Pycharm安装jupyter和d2l,pycharm,jupyter,ide
把下载的whl放进找到的项目site-packages文件夹里:

Pycharm安装jupyter和d2l,pycharm,jupyter,ide
回到pycharm终端输入命令下载即可:

pip install d2l

Pycharm安装jupyter和d2l,pycharm,jupyter,ide文章来源地址https://www.toymoban.com/news/detail-737699.html

到了这里,关于Pycharm安装jupyter和d2l的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 李沐深度学习环境安装(包括pytorch和d2l)

    进入Anaconda官网下载:https://www.anaconda.com/distribution/ 安装细节不在这赘述,和一般软件相同。如下图注意点 最后检测是否安装成功,打开cmd命令行输入 conda --version ,如下图显示版本即为安装成功 2.1 切换到国内镜像源,分别输入以下4行代码: 2.2 创建pytorch环境 创建pytorch环境

    2024年02月13日
    浏览(43)
  • 关于安装李沐深度学习d2l包报错的解决办法(保姆教程)

    因为换了新电脑,所以环境都是从零开始配置,但是在安装李沐深度学习里常用的d2l包的时候,确实频繁报错。 这里总结一下我的报错原因,希望大家在遇到bug的时候能够从容面对。 在安装深度学习框架之前,请先检查你的计算机上是否有可用的GPU。 例如,你可以查看计算

    2024年02月03日
    浏览(54)
  • d2l 线性回归的简洁实现

    上一节 张量:数据存储、线性代数;自动微分:计算梯度 开源框架,可自动化基于梯度的学习算法中重复性的工作 数据迭代器、损失函数、优化器、神经网络层 使用深度学习框架简洁实现 线性回归模型 生成数据集 标准深度学习模型,使用框架预定义好的层 关注用哪些层

    2024年02月14日
    浏览(45)
  • d2l学习——第一章Introduction

    使用d2l库,安装如下: 如果安装不上d2l可以用下面的方法: pip install git+https://github.com/d2l-ai/d2l-en 就和统计学习方法书中说的一样,机器学习也可以分为几个核心要义, Data, Models, Objective Functions, Optimization Algorithms , 其中: Data: 用来学习的数据 Model: 如何转换/translate数据的

    2024年02月08日
    浏览(50)
  • 跟着李沐学AI(动手学深度学习 PyTorch版)学习笔记——03安装(环境配置d2l、pytorch)(python3.7版本+Windows+各种问题解决措施)

    1.下载Miniconda下载地址 2.在安装过程中需要勾选“Add Anaconda to the system PATH environment variable”选项 3.检验win+R,输入cmd,在文本框输入conda --version 1.点击该链接+点击jupyter记事本下载压缩包 2.解压该压缩包 3.在解压后的文件夹地址栏输入cmd回车进入命令模式。 1.conda和pip默认使⽤

    2024年02月12日
    浏览(57)
  • 卷积神经网络——下篇【深度学习】【PyTorch】【d2l】

    5.10.1、理论部分 批量归一化可以解决深层网络中梯度消失和收敛慢的问题,通过固定每个批次的均值和方差来加速收敛,一般不改变模型精度。批量规范化已经被证明是一种不可或缺的方法,它适用于几乎所有图像分类器。 批量规划是一个线性变换 ,把参数的均值方差给拉

    2024年02月12日
    浏览(47)
  • 卷积神经网络——中篇【深度学习】【PyTorch】【d2l】

    5.5.1、理论部分 两个⌈ 卷积块 ⌋ 每个卷积块中的基本单元是一个⌈ 卷积层 ⌋、一个 ⌈ sigmoid激活函数 ⌋和 ⌈ 平均汇聚层 ⌋ 三个⌈ 全连接层密集块 ⌋ 早期神经网络,先使用卷积层学习图片空间信息,然后全连接层转换到类别空间。 5.5.2、代码实现 定义一个 Sequential块

    2024年02月11日
    浏览(56)
  • 卷积神经网络——上篇【深度学习】【PyTorch】【d2l】

    5.1.1、理论部分 全连接层后,卷积层出现的意义? 一个足够充分的照片数据集,输入,全连接层参数,GPU成本,训练时间是巨大的。 (convolutional neural networks,CNN)是机器学习利用自然图像中一些已知结构的创造性方法,需要更少的参数,在处理图像和其他类型的结构化数据

    2024年02月12日
    浏览(47)
  • d2l_第九章_RNN循环神经网络

    经过前面的学习,我们已知数据大于算法。而以数据为驱动的前提下,我们提出了各种模型。为了适配表格数据,提出了MLP;为了适配图像数据提出了CNN;而对了适配序列数据,我们提出了RNN。 目前为止的数据的样本都符合iid独立同分布特点,但是对于音频,文本中的单词等

    2024年02月12日
    浏览(42)
  • 线性神经网路——线性回归随笔【深度学习】【PyTorch】【d2l】

    线性回归是显式解,深度学习中绝大多数遇到的都是隐式解。 3.1.1、PyTorch 从零实现线性回归 生成数据集及标签 d2l.plt.scatter(,,) ,使用d2l库中的绘图函数来创建散点图。 这个函数接受三个参数: features[:,1].detach().numpy() 是一个二维张量features的切片操作,选择了所有行的第二

    2024年02月15日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包