CentOS 搭建 Hadoop3 高可用集群

这篇具有很好参考价值的文章主要介绍了CentOS 搭建 Hadoop3 高可用集群。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Hadoop FullyDistributed Mode 完全分布式

spark101 spark102 spark103
192.168.171.101 192.168.171.102 192.168.171.103
namenode namenode
journalnode journalnode journalnode
datanode datanode datanode
nodemanager nodemanager nodemanager
recource manager recource manager
job history
job log job log job log

1. 准备

1.1 升级操作系统和软件

yum -y update

升级后建议重启

1.2 安装常用软件

yum -y install gcc gcc-c++ autoconf automake cmake make rsync vim man zip unzip net-tools zlib zlib-devel openssl openssl-devel pcre-devel tcpdump lrzsz tar wget openssh-server

1.3 修改主机名

hostnamectl set-hostname spark01
hostnamectl set-hostname spark02
hostnamectl set-hostname spark03

1.4 修改IP地址

vim /etc/sysconfig/network-scripts/ifcfg-ens160

网卡 配置文件示例

TYPE="Ethernet"
PROXY_METHOD="none"
BROWSER_ONLY="no"
BOOTPROTO="none"
DEFROUTE="yes"
IPV4_FAILURE_FATAL="no"
IPV6INIT="yes"
IPV6_AUTOCONF="yes"
IPV6_DEFROUTE="yes"
IPV6_FAILURE_FATAL="no"
IPV6_ADDR_GEN_MODE="stable-privacy"
NAME="ens32"
DEVICE="ens32"
ONBOOT="yes"
IPADDR="192.168.171.101"
PREFIX="24"
GATEWAY="192.168.171.2"
DNS1="192.168.171.2"
IPV6_PRIVACY="no"

1.5 关闭防火墙

sed -i 's/SELINUX=enforcing/SELINUX=disabled/g' /etc/selinux/configsetenforce 0
systemctl stop firewalld
systemctl disable firewalld

1.6 修改hosts配置文件

vim /etc/hosts

修改内容如下:

192.168.171.101	spark01
192.168.171.102	spark02
192.168.171.103	spark03

1.7 上传软件配置环境变量

在所有主机节点创建软件目录

mkdir -p /opt/soft 

以下操作在 hadoop101 主机上完成

进入软件目录

cd /opt/soft

下载 JDK

wget https://download.oracle.com/otn/java/jdk/8u391-b13/b291ca3e0c8548b5a51d5a5f50063037/jdk-8u391-linux-x64.tar.gz?AuthParam=1698206552_11c0bb831efdf87adfd187b0e4ccf970

下载 zookeeper

wget https://dlcdn.apache.org/zookeeper/zookeeper-3.8.3/apache-zookeeper-3.8.3-bin.tar.gz

下载 hadoop

wget https://dlcdn.apache.org/hadoop/common/hadoop-3.3.5/hadoop-3.3.5.tar.gz

解压 JDK 修改名称

解压 zookeeper 修改名称

解压 hadoop 修改名称

tar -zxvf jdk-8u391-linux-x64.tar.gz -C /opt/soft/
mv jdk1.8.0_391/ jdk-8
tar -zxvf apache-zookeeper-3.8.3-bin.tar.gz
mv apache-zookeeper-3.8.3-bin zookeeper-3
tar -zxvf hadoop-3.3.5.tar.gz -C /opt/soft/
mv hadoop-3.3.5/ hadoop-3

配置环境变量

vim /etc/profile.d/my_env.sh

编写以下内容:

export JAVA_HOME=/opt/soft/jdk-8
# export set JAVA_OPTS="--add-opens java.base/java.lang=ALL-UNNAMED"

export ZOOKEEPER_HOME=/opt/soft/zookeeper-3

export HDFS_NAMENODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_ZKFC_USER=root
export HDFS_JOURNALNODE_USER=root
export HADOOP_SHELL_EXECNAME=root

export YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root


export HADOOP_HOME=/opt/soft/hadoop-3
export HADOOP_INSTALL=$HADOOP_HOME
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop

export PATH=$PATH:$JAVA_HOME/bin:$ZOOKEEPER_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

生成新的环境变量

注意:分发软件和配置文件后 在所有主机执行该步骤

source /etc/profile

2. zookeeper

2.1 编辑配置文件

cd $ZOOKEEPER_HOME/conf
vim zoo.cfg
# 心跳单位,2s
tickTime=2000
# zookeeper-3初始化的同步超时时间,10个心跳单位,也即20s
initLimit=10
# 普通同步:发送一个请求并得到响应的超时时间,5个心跳单位也即10s
syncLimit=5
# 内存快照数据的存储位置
dataDir=/home/zookeeper-3/data
# 事务日志的存储位置
dataLogDir=/home/zookeeper-3/datalog
# 当前zookeeper-3节点的端口 
clientPort=2181
# 单个客户端到集群中单个节点的并发连接数,通过ip判断是否同一个客户端,默认60
maxClientCnxns=1000
# 保留7个内存快照文件在dataDir中,默认保留3个
autopurge.snapRetainCount=7
# 清除快照的定时任务,默认1小时,如果设置为0,标识关闭清除任务
autopurge.purgeInterval=1
#允许客户端连接设置的最小超时时间,默认2个心跳单位
minSessionTimeout=4000
#允许客户端连接设置的最大超时时间,默认是20个心跳单位,也即40s,
maxSessionTimeout=300000
#zookeeper-3 3.5.5启动默认会把AdminService服务启动,这个服务默认是8080端口
admin.serverPort=9001
#集群地址配置
server.1=spark01:2888:3888
server.2=spark02:2888:3888
server.3=spark03:2888:3888
tickTime=2000
initLimit=10
syncLimit=5
dataDir=/home/zookeeper-3/data
dataLogDir=/home/zookeeper-3/datalog 
clientPort=2181
maxClientCnxns=1000
autopurge.snapRetainCount=7
autopurge.purgeInterval=1
minSessionTimeout=4000
maxSessionTimeout=300000
admin.serverPort=9001
server.1=spark01:2888:3888
server.2=spark02:2888:3888
server.3=spark03:2888:3888

2.2 保存后根据配置文件创建目录

在每台服务器上执行

mkdir -p /home/zookeeper-3/data
mkdir -p /home/zookeeper-3/datalog

2.3 myid

spark01

echo 1 > /home/zookeeper-3/data/myid
more /home/zookeeper-3/data/myid

spark02

echo 2 > /home/zookeeper-3/data/myid
more /home/zookeeper-3/data/myid

spark03

echo 3 > /home/zookeeper-3/data/myid
more /home/zookeeper-3/data/myid

2.4 编写zookeeper-3开机启动脚本

在/etc/systemd/system/文件夹下创建一个启动脚本zookeeper-3.service

注意:在每台服务器上编写

cd /etc/systemd/system
vim zookeeper.service

内容如下:

[Unit]
Description=zookeeper
After=syslog.target network.target

[Service]
Type=forking
# 指定zookeeper-3 日志文件路径,也可以在zkServer.sh 中定义
Environment=ZOO_LOG_DIR=/home/zookeeper-3/datalog
# 指定JDK路径,也可以在zkServer.sh 中定义
Environment=JAVA_HOME=/opt/soft/jdk-8
ExecStart=/opt/soft/zookeeper-3/bin/zkServer.sh start
ExecStop=/opt/soft/zookeeper-3/bin/zkServer.sh stop
Restart=always
User=root
Group=root

[Install]
WantedBy=multi-user.target
[Unit]
Description=zookeeper
After=syslog.target network.target

[Service]
Type=forking
Environment=ZOO_LOG_DIR=/home/zookeeper-3/datalog
Environment=JAVA_HOME=/opt/soft/jdk-8
ExecStart=/opt/soft/zookeeper-3/bin/zkServer.sh start
ExecStop=/opt/soft/zookeeper-3/bin/zkServer.sh stop
Restart=always
User=root
Group=root

[Install]
WantedBy=multi-user.target
systemctl daemon-reload
# 等所有主机配置好后再执行以下命令
systemctl start zookeeper
systemctl enable zookeeper
systemctl status zookeeper

3. hadoop

修改配置文件

cd  $HADOOP_HOME/etc/hadoop
  • hadoop-env.sh
  • core-site.xml
  • hdfs-site.xml
  • workers
  • mapred-site.xml
  • yarn-site.xml

hadoop-env.sh 文件末尾追加

export JAVA_HOME=/opt/soft/jdk-8
# export HADOOP_OPTS="--add-opens java.base/java.lang=ALL-UNNAMED"

export HDFS_NAMENODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_ZKFC_USER=root
export HDFS_JOURNALNODE_USER=root
export HADOOP_SHELL_EXECNAME=root

export YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root


core-site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->

<!-- Put site-specific property overrides in this file. -->

<configuration>
  <property>
    <name>fs.defaultFS</name>
    <value>hdfs://lihaozhe</value>
  </property>
  <property>
    <name>hadoop.tmp.dir</name>
    <value>/home/hadoop/data</value>
  </property>
  <property>
    <name>ha.zookeeper.quorum</name>
    <value>spark01:2181,spark02:2181,spark03:2181</value>
  </property>
  <property>
    <name>hadoop.http.staticuser.user</name>
    <value>root</value>
  </property>
  <property>
    <name>dfs.permissions.enabled</name>
    <value>false</value>
  </property>
  <property>
    <name>hadoop.proxyuser.root.hosts</name>
    <value>*</value>
  </property>
  <property>
    <name>hadoop.proxyuser.root.groups</name>
    <value>*</value>
  </property>
  <property>
    <name>hadoop.proxyuser.root.users</name>
    <value>*</value>
  </property>
</configuration>

hdfs-site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->

<!-- Put site-specific property overrides in this file. -->

<configuration>
  <property>
    <name>dfs.nameservices</name>
    <value>lihaozhe</value>
  </property>
  <property>
    <name>dfs.ha.namenodes.lihaozhe</name>
    <value>nn1,nn2</value>
  </property>
  <property>
    <name>dfs.namenode.rpc-address.lihaozhe.nn1</name>
    <value>spark01:8020</value>
  </property>
  <property>
    <name>dfs.namenode.rpc-address.lihaozhe.nn2</name>
    <value>spark02:8020</value>
  </property>
  <property>
    <name>dfs.namenode.http-address.lihaozhe.nn1</name>
    <value>spark01:9870</value>
  </property>
  <property>
    <name>dfs.namenode.http-address.lihaozhe.nn2</name>
    <value>spark02:9870</value>
  </property>
  <property>
    <name>dfs.namenode.shared.edits.dir</name>
    <value>qjournal://spark01:8485;spark02:8485;spark03:8485/lihaozhe</value>
  </property>
  <property>
    <name>dfs.client.failover.proxy.provider.lihaozhe</name>
    <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
  </property>
  <property>
    <name>dfs.ha.fencing.methods</name>
    <value>sshfence</value>
  </property>
  <property>
    <name>dfs.ha.fencing.ssh.private-key-files</name>
    <value>/root/.ssh/id_rsa</value>
  </property>
  <property>
    <name>dfs.journalnode.edits.dir</name>
    <value>/home/hadoop/journalnode/data</value>
  </property>
  <property>
    <name>dfs.ha.automatic-failover.enabled</name>
    <value>true</value>
  </property>
  <property>
    <name>dfs.safemode.threshold.pct</name>
    <value>1</value>
  </property>
</configuration>

workers

spark01
spark02
spark03

mapred-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->

<!-- Put site-specific property overrides in this file. -->

<configuration>
  <property>
    <name>mapreduce.framework.name</name>
    <value>yarn</value>
  </property>
  <property>
    <name>mapreduce.application.classpath</name>
    <value>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*:$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*</value>
  </property>
  <!-- yarn历史服务端口 -->
  <property>
    <name>mapreduce.jobhistory.address</name>
    <value>spark01:10020</value>
  </property>
  <!-- yarn历史服务web访问端口 -->
  <property>
    <name>mapreduce.jobhistory.webapp.address</name>
    <value>spark01:19888</value>
  </property>
</configuration>

yarn-site.xml

<?xml version="1.0"?>
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->
<configuration>

  <!-- Site specific YARN configuration properties -->
  <property>
    <name>yarn.resourcemanager.ha.enabled</name>
    <value>true</value>
  </property>
  <property>
    <name>yarn.resourcemanager.cluster-id</name>
    <value>cluster1</value>
  </property>
  <property>
    <name>yarn.resourcemanager.ha.rm-ids</name>
    <value>rm1,rm2</value>
  </property>
  <property>
    <name>yarn.resourcemanager.hostname.rm1</name>
    <value>spark01</value>
  </property>
  <property>
    <name>yarn.resourcemanager.hostname.rm2</name>
    <value>spark02</value>
  </property>
  <property>
    <name>yarn.resourcemanager.webapp.address.rm1</name>
    <value>spark01:8088</value>
  </property>
  <property>
    <name>yarn.resourcemanager.webapp.address.rm2</name>
    <value>spark02:8088</value>
  </property>
  <property>
    <name>yarn.resourcemanager.zk-address</name>
    <value>spark01:2181,spark02:2181,spark03:2181</value>
  </property>
  <property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
  </property>
  <property>
    <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
    <value>org.apache.hadoop.mapred.ShuffleHandler</value>
  </property>
  <property>
    <name>yarn.nodemanager.env-whitelist</name>
    <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
  </property>
  <!-- 是否将对容器实施物理内存限制 -->
  <property>
    <name>yarn.nodemanager.pmem-check-enabled</name>
    <value>false</value>
  </property>

  <!-- 是否将对容器实施虚拟内存限制。 -->
  <property>
    <name>yarn.nodemanager.vmem-check-enabled</name>
    <value>false</value>
  </property>
  <!-- 开启日志聚集 -->
  <property>
    <name>yarn.log-aggregation-enable</name>
    <value>true</value>
  </property>

  <!-- 设置yarn历史服务器地址 -->
  <property>
    <name>yarn.log.server.url</name>
    <value>http://spark01:19888/jobhistory/logs</value>
  </property>

  <!-- 保存的时间7天 -->
  <property>
    <name>yarn.log-aggregation.retain-seconds</name>
    <value>604800</value>
  </property>
</configuration>

4. 配置ssh免密钥登录

创建本地秘钥并将公共秘钥写入认证文件

ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
ssh-copy-id root@spark01
ssh-copy-id root@spark02
ssh-copy-id root@spark03
ssh root@spark01
exit
ssh root@spark02
exit
ssh root@spark03
exit

5. 分发软件和配置文件

scp -r /etc/profile.d root@spark02:/etc
scp -r /etc/profile.d root@spark03:/etc
scp -r /opt/soft/zookeeper-3 root@spark02:/opt/soft
scp -r /opt/soft/zookeeper-3 root@spark03:/opt/soft
scp -r /opt/soft/hadoop-3/etc/hadoop/* root@spark02:/opt/soft/hadoop-3/etc/hadoop/
scp -r /opt/soft/hadoop-3/etc/hadoop/* root@spark03:/opt/soft/hadoop-3/etc/hadoop/

6. 在各服务器上使环境变量生效

source /etc/profile

7. 启动zookeeper

7.1 myid

spark01

echo 1 > /home/zookeeper-3/data/myid
more /home/zookeeper-3/data/myid

spark02

echo 2 > /home/zookeeper-3/data/myid
more /home/zookeeper-3/data/myid

spark03

echo 3 > /home/zookeeper-3/data/myid
more /home/zookeeper-3/data/myid

7.2 启动服务

在各节点执行以下命令

systemctl daemon-reload
systemctl start zookeeper
systemctl enable zookeeper
systemctl status zookeeper

7.3 验证

jps
zkServer.sh status

8. Hadoop初始化

1.	启动三个zookeeper:zkServer.sh start
2.	启动三个JournalNode:
	hadoop-daemon.sh start journalnode 或者 hdfs --daemon start journalnode
3.	在其中一个namenode上格式化:hdfs namenode -format
4.	把刚刚格式化之后的元数据拷贝到另外一个namenode上
    a)	启动刚刚格式化的namenode :
    	hadoop-daemon.sh start namenode 或者 hdfs --daemon start namenode
    b)	在没有格式化的namenode上执行:hdfs namenode -bootstrapStandby
    c)	启动第二个namenode: 
    	hadoop-daemon.sh start namenode 或者 hdfs --daemon start namenode
5.	在其中一个namenode上初始化 hdfs zkfc -formatZK
6.	停止上面节点:stop-dfs.sh
7.	全面启动:start-all.sh
8. 启动resourcemanager节点 
	yarn-daemon.sh start resourcemanager 或者	start-yarn.sh

http://dl.bintray.com/sequenceiq/sequenceiq-bin/hadoop-native-64-2.5.0.tar

不需要执行第 89. 启动历史服务
mapred --daemon start historyserver
10 11 12 不需要执行
10、安全模式

hdfs dfsadmin -safemode enter  
hdfs dfsadmin -safemode leave


11、查看哪些节点是namenodes并获取其状态
hdfs getconf -namenodes
hdfs haadmin -getServiceState nn1
hdfs haadmin -getServiceState nn2

12、强制切换状态
hdfs haadmin -transitionToActive --forcemanual spark01

重点提示:

# 关机之前 依关闭服务
stop-yarn.sh
stop-dfs.sh
# 开机后 依次开启服务
start-dfs.sh
start-yarn.sh

或者

# 关机之前关闭服务
stop-all.sh
# 开机后开启服务
start-all.sh
#jps 检查进程正常后开启胡哦关闭在再做其它操作

9. 修改windows下hosts文件

C:\Windows\System32\drivers\etc\hosts

追加以下内容:

192.168.171.101	hadoop101
192.168.171.102	hadoop102
192.168.171.103	hadoop103

Windows11 注意 修改权限

  1. 开始搜索 cmd

    找到命令头提示符 以管理身份运行

    CentOS 搭建 Hadoop3 高可用集群,Hadoop,大数据,数据分析,centos,linux,运维,大数据,hadoop

    CentOS 搭建 Hadoop3 高可用集群,Hadoop,大数据,数据分析,centos,linux,运维,大数据,hadoop

  2. 进入 C:\Windows\System32\drivers\etc 目录

    cd drivers/etc
    

    CentOS 搭建 Hadoop3 高可用集群,Hadoop,大数据,数据分析,centos,linux,运维,大数据,hadoop

  3. 去掉 hosts文件只读属性

    attrib -r hosts
    

    CentOS 搭建 Hadoop3 高可用集群,Hadoop,大数据,数据分析,centos,linux,运维,大数据,hadoop

  4. 打开 hosts 配置文件

    start hosts
    

    CentOS 搭建 Hadoop3 高可用集群,Hadoop,大数据,数据分析,centos,linux,运维,大数据,hadoop

  5. 追加以下内容后保存

    192.168.171.101	spark01
    192.168.171.102	spark02
    192.168.171.103	spark03
    

10. 测试

12.1 浏览器访问hadoop集群

浏览器访问: http://spark01:9870

CentOS 搭建 Hadoop3 高可用集群,Hadoop,大数据,数据分析,centos,linux,运维,大数据,hadoop

CentOS 搭建 Hadoop3 高可用集群,Hadoop,大数据,数据分析,centos,linux,运维,大数据,hadoop

浏览器访问:http://spark01:8088

CentOS 搭建 Hadoop3 高可用集群,Hadoop,大数据,数据分析,centos,linux,运维,大数据,hadoop

浏览器访问:http://spark01:19888/

CentOS 搭建 Hadoop3 高可用集群,Hadoop,大数据,数据分析,centos,linux,运维,大数据,hadoop

12.2 测试 hdfs

本地文件系统创建 测试文件 wcdata.txt

vim wcdata.txt
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive
FlinkHBase Flink
Hive StormHive Flink HadoopHBase
HiveHadoop Spark HBase StormHBase
Hadoop Hive FlinkHBase Flink Hive StormHive
Flink HadoopHBase Hive
Spark HBaseHive Flink
Storm Hadoop HBase SparkFlinkHBase
StormHBase Hadoop Hive

在 HDFS 上创建目录 /wordcount/input

hdfs dfs -mkdir -p /wordcount/input

查看 HDFS 目录结构

hdfs dfs -ls /
hdfs dfs -ls /wordcount
hdfs dfs -ls /wordcount/input

上传本地测试文件 wcdata.txt 到 HDFS 上 /wordcount/input

hdfs dfs -put wcdata.txt /wordcount/input

检查文件是否上传成功

hdfs dfs -ls /wordcount/input
hdfs dfs -cat /wordcount/input/wcdata.txt

12.2 测试 mapreduce

计算 PI 的值

hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.5.jar pi 10 10

单词统计

hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.5.jar wordcount /wordcount/input/wcdata.txt /wordcount/result
hdfs dfs -ls /wordcount/result
hdfs dfs -cat /wordcount/result/part-r-00000

11. 元数据

hadoop101

cd /home/hadoop_data/dfs/name/current
ls

看到如下内容:

edits_0000000000000000001-0000000000000000009  edits_inprogress_0000000000000000299  fsimage_0000000000000000298      VERSION
edits_0000000000000000010-0000000000000000011  fsimage_0000000000000000011           fsimage_0000000000000000298.md5
edits_0000000000000000012-0000000000000000298  fsimage_0000000000000000011.md5       seen_txid

查看fsimage

hdfs oiv -p XML -i fsimage_0000000000000000011

将元数据内容按照指定格式读取后写入到新文件中文章来源地址https://www.toymoban.com/news/detail-738052.html

hdfs oiv -p XML -i fsimage_0000000000000000011 -o /opt/soft/fsimage.xml

查看edits

将元数据内容按照指定格式读取后写入到新文件中

hdfs oev -p XML -i edits_inprogress_0000000000000000299  -o /opt/soft/edit.xml

到了这里,关于CentOS 搭建 Hadoop3 高可用集群的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大数据技术栈-Hadoop3.3.4-完全分布式集群搭建部署-centos7(完全超详细-小白注释版)虚拟机安装+平台部署

    目录 环境条件: 1、安装虚拟机(已安装好虚拟机的可跳转至  二、安装JDK与Hadoop) (1)直接新建一台虚拟机 (2)首次启用虚拟机,进行安装 一、集群前置环境搭建(三台机器分别设置hostname、网卡(ip)配置、ssh免密登录) 1、查看一下本机与虚拟机的网卡和ip信息 (1)

    2024年02月06日
    浏览(46)
  • Hadoop3的高可用搭建

    1. 准备工作 前期准备工作包括了  CenOS 7虚拟化安装与配置, Java虚拟机的安装,  Hadoop相关部署包的下载, Hadoop集群所需基础环境的配置。 第一点CenOS 7虚拟化安装与配置和第二点Java虚拟机的安装: 需要我们参考第一章:大数据技术训练舱——从零开始安装、配置CentOS 7 第

    2024年02月10日
    浏览(45)
  • 【大数据】Hadoop高可用集群搭建

    大家好!这篇文章是我在搭建Hdfs的HA(高可用)时写下的详细笔记与感想,希望能帮助到大家!本篇文章收录于 初心 的 大数据 专栏。 🏠 个人主页:初心%个人主页 🧑 个人简介:大家好,我是初心,和大家共同努力 💕 座右铭:理想主义的花,终究会盛开在浪漫主义的土壤里

    2024年02月06日
    浏览(40)
  • 七、Hadoop系统应用之搭建Hadoop高可用集群(超详细步骤指导操作,WIN10,VMware Workstation 15.5 PRO,CentOS-6.7)

    Hadoop集群搭建前安装准备参考: 一、Hadoop系统应用之安装准备(一)(超详细步骤指导操作,WIN10,VMware Workstation 15.5 PRO,CentOS-6.7) 一、Hadoop系统应用之安装准备(二)(超详细步骤指导操作,WIN10,VMware Workstation 15.5 PRO,CentOS-6.7) Hadoop集群搭建过程参考: 二、Hadoop系统应

    2024年02月02日
    浏览(49)
  • 【hadoop3.x】一 搭建集群调优

    https://blog.csdn.net/fen_dou_shao_nian/article/details/120945221 2.1 模板虚拟机环境准备 0)安装模板虚拟机,IP 地址 192.168.10.100、主机名称 hadoop100、内存 4G、硬盘 50G 1)hadoop100 虚拟机配置要求如下(本文 Linux 系统全部以 CentOS-7.5-x86-1804 为例) (1)使用 yum 安装需要虚拟机可以正常上网,

    2024年02月07日
    浏览(47)
  • Hadoop3.1.4完全分布式集群搭建

    在Centos7中直接使用root用户执行hostnamectl命令修改,重启(reboot)后永久生效。 要求:三台主机的名字分别为:master slave1 slave2 关闭后,可查看防火墙状态,当显示disavtive(dead)的字样,说明CentOS 7防火墙已经关闭。 但要注意的是,上面的命令只是临时关闭了CentOS 7防火墙,

    2024年04月17日
    浏览(48)
  • 大数据平台搭建——hadoop集群(基于CentOS-7)的搭建

    目录 总序 一、下载相关软件的压缩包 二、配置虚拟机上主节点相关设置 1、修改主机用户名 2、进行ip地址映射 3、配置虚拟机网络设置   三、解压并配置java、hadoop环境 1、解压jdk、hadoop压缩文件  2、配置jdk、hadoop环境 3、修改hadoop中的相关配置文件信息(最重要) 四、克隆

    2024年02月06日
    浏览(46)
  • 基于CentOS 7 的 Hadoop3版本分布式环境配置搭建

    以下是在VMware虚拟机中安装centos 7去配置hadoop。所以要准备的包 centos 7:Index of /apache/hadoop/common/hadoop-3.3.5 hadoop3.3.5:Index of /apache/hadoop/common/hadoop-3.3.5 查看原本的jdk版本   其实原来的openjdk版本也是可用的,但是hadoop3.x不支持较低版本的jdk,所以这里卸载重新安装新版本jdk文件

    2024年02月01日
    浏览(52)
  • 基于Linux环境下搭建Hadoop3.3.5伪分布式集群

    目录 架构设计: 一、下载hadoop安装包 二、解压及构建软连接 三、 修改配置文件 1. 配置workers文件   //hadoop02中叫slaves 2. 修改hadoop-env.sh          3. 修改core-site.xml     4. 修改hdfs-site.xml 5. 配置:mapred-site.xml文件   6. 配置yarn-site.xml文件  四、根据hdfs-site.xml的配置项,准备数

    2024年01月19日
    浏览(47)
  • 【hadoop】centos7.6+hadoop3.1.1搭建分布式hadoop环境——包含各类问题解决方案

    本文针对centos7.4即以上版本的hadoop环境搭建,因为这部分搭建是个很复杂且很容易出错的内容,所以在结合了多种搭建方案后给出最适宜当前版本的搭建。 本教程适用于CentOS 7.4即以上版本,如果是Ubuntu等其它linux内核版本则不适合。 查看系统版本: 软件 版本 获取方法 Ope

    2024年02月16日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包