SQLAlchemy技术文档(中文版)(全)

这篇具有很好参考价值的文章主要介绍了SQLAlchemy技术文档(中文版)(全)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

原文链接:http://www.cnblogs.com/iwangzc/p/4112078.html(感谢作者的分享)

sqlalchemy 官方文档:http://docs.sqlalchemy.org/en/latest/contents.html

1.版本检查

import sqlalchemy
sqlalchemy.__version__

2.连接

from sqlalchemy import create_engine
engine = create_engine('sqlite:///:memory:',echo=True)

echo参数为True时,会显示每条执行的SQL语句,可以关闭。create_engine()返回一个Engine的实例,并且它表示通过数据库语法处理细节的核心接口,在这种情况下,数据库语法将会被解释称Python的类方法。

3.声明映像

当使用ORM【1】时,构造进程首先描述数据库的表,然后定义我们用来映射那些表的类。在现版本的SQLAlchemy中,这两个任务通常一起执行,通过使用Declarative方法,我们可以创建一些包含描述要被映射的实际数据库表的准则的映射类。

使用Declarative方法定义的映射类依据一个基类,这个基类是维系类和数据表关系的目录——我们所说的Declarative base class。在一个普通的模块入口中,应用通常只需要有一个base的实例。我们通过declarative_base()功能创建一个基类:

from sqlalchemy.ext.declarativeimportdeclarative_base
Base = declarative_base()

有了这个base,我们可以依据这个base定义任意数量的映射类。一个简单的user例子:

from sqlalchemy import Column, Integer, String
class User(Base):
__tablename__= 'users'
id= Column(Integer, primary_key=True)
name = Column(String)

用Declarative构造的一个类至少需要一个__tablename__属性,一个主键行。

4.构造模式(项目中没用到)

5.创建映射类的实例

ed_user = User(name='ed',fullname='Ed Jones', password='edspassword')

6.创建会话

现在我们已经准备毫和数据库开始会话了。ORM通过Session与数据库建立连接的。当应用第一次载入时,我们定义一个Session类(声明create_engine()的同时),这个Session类为新的Session对象提供工厂服务。

from sqlalchemy.orm import sessionmaker
Session = sessionmaker(bind=engine)

这个定制的Session类会创建绑定到数据库的Session对象。如果需要和数据库建立连接,只需要实例化一个Session:

session = Session()

虽然上面的Session已经和数据库引擎Engine关联,但是还没有打开任何连接。当它第一次被使用时,就会从Engine维护的一个连接池中检索是否存在连接,如果存在便会保持连接知道我们提交所有更改并且/或者关闭session对象。

7.添加新对象(简略)

ed_user = User(name='ed', fullname='Ed Jones', password='edspassword')
session.add(ed_user)

至此,我们可以认为,新添加的这个对象实例仍在等待中;ed_user对象现在并不代表数据库中的一行数据。直到使用flush进程,Session才会让SQL保持连接。如果查询这条数据的话,所有等待信息会被第一时间刷新,查询结果也会立即发行。

session.commit()

通过commit()可以提交所有剩余的更改到数据库。

8.回滚

session.rollback()

9.查询

通过Session的query()方法创建一个查询对象。这个函数的参数数量是可变的,参数可以是任何类或者是类的描述的集合。下面是一个迭代输出User类的例子:

for instance in session.query(User).order_by(User.id):
print instance.name,instance.fullname

Query也支持ORM描述作为参数。任何时候,多个类的实体或者是基于列的实体表达都可以作为query()函数的参数,返回类型是元组:

for name, fullname in session.query(User.name,User.fullname): 

print name, fullname

Query返回的元组被命名为KeyedTuple类的实例元组。并且可以把它当成一个普通的Python数据类操作。元组的名字就相当于属性的属性名,类的类名一样。

for row in session.query(User, User.name).all():

print row.User,row.name
<User(name='ed',fullname='Ed Jones', password='f8s7ccs')>ed

label()不知道怎么解释,看下例子就明白了。相当于row.name

for row in session.query(User.name.label('name_label')).all():

print(row.name_label)

aliased()我的理解是类的别名,如果有多个实体都要查询一个类,可以用aliased()

from sqlalchemy.orm import aliased
user_alias = aliased(User, name='user_alias')
for row in session.query(user_alias,user_alias.name).all():

print row.user_alias

Query的 基本操作包括LIMIT和OFFSET,使用Python数组切片和ORDERBY结合可以让操作变得很方便。

for u in session.query(User).order_by(User.id)[1:3]:

#只查询第二条和第三条数据

9.1使用关键字变量过滤查询结果,filter 和 filter_by都适用。【2】使用很简单,下面列出几个常用的操作:

query.filter(User.name == 'ed') #equals
query.filter(User.name != 'ed') #not equals
query.filter(User.name.like('%ed%')) #LIKE
uery.filter(User.name.in_(['ed','wendy', 'jack'])) #IN
query.filter(User.name.in_(session.query(User.name).filter(User.name.like('%ed%'))#IN
query.filter(~User.name.in_(['ed','wendy', 'jack']))#not IN
query.filter(User.name == None)#is None
query.filter(User.name != None)#not None
from sqlalchemy import and_
query.filter(and_(User.name =='ed',User.fullname =='Ed Jones')) # and
query.filter(User.name == 'ed',User.fullname =='Ed Jones') # and
query.filter(User.name == 'ed').filter(User.fullname == 'Ed Jones')# and
from sqlalchemy import or_
query.filter(or_(User.name =='ed', User.name =='wendy')) #or
query.filter(User.name.match('wendy')) #match

9.2.返回列表和数量(标量?)

all()返回一个列表:可以进行Python列表的操作。

query = session.query(User).filter(User.name.like('%ed')).order_by(User.id)
query.all()

[<User(name='ed',fullname='EdJones', password='f8s7ccs')>,<User(name='fred',
fullname='FredFlinstone', password='blah')>]
 

first()适用于限制一个情况,返回查询到的第一个结果作为标量?:好像只能作为属性,类

query.first()

<User(name='ed',fullname='Ed Jones', password='f8s7ccs')>

one()完全获取所有行,并且如果查询到的不只有一个对象或是有复合行,就会抛出异常。

from sqlalchemy.orm.exc import MultipleResultsFound
user = query.one()
try:

  user = query.one()
except
  MultipleResultsFound, e:
  print e
Multiple rows were found for one()

如果一行也没有:

from sqlalchemy.orm.exc import NoResultFound
try:

  user = query.filter(User.id == 99).one()
except
NoResultFound, e:
  print e
No row was found for one()

one()方法对于想要解决“no items found”和“multiple items found”是不同的系统是极好的。(这句有语病啊)例如web服务返回,本来是在no results found情况下返回”404“的,结果在多个results found情况下也会跑出一个应用异常。

scalar()作为one()方法的依据,并且在one()成功基础上返回行的第一列。

query = session.query(User.id).filter(User.name == 'ed')
query.scalar()

7

9.3.使用字符串SQL

字符串能使Query更加灵活,通过text()构造指定字符串的使用,这种方法可以用在很多方法中,像filter()和order_by()。

from sqlalchemy import text
for user in session.query(User).filter(text("id<224")).order_by(text("id")).all()

绑定参数可以指定字符串,用params()方法指定数值。

session.query(User).filter(text("id<:value and name=:name")).\

params(value=224, name='fred').order_by(User.id).one()
 

如果要用一个完整的SQL语句,可以使用from_statement()。

ession.query(User).from_statement(text("SELECT* FROM users where name=:name")).\
			params(name='ed').all()

也可以用from_statement()获取完整的”raw”,用字符名确定希望被查询的特定列:

session.query("id","name", "thenumber12").\

from_statement(text("SELECT id, name, 12 as ""thenumber12 FROM users where name=:name")).\

 params(name='ed').all()

[(1,u'ed', 12)]
感觉这个不太符合ORM的思想啊。。。
 

9.4 计数

count()用来统计查询结果的数量。

session.query(User).filter(User.name.like('%ed')).count()

func.count()方法比count()更高级一点【3】

from sqlalchemy import func
session.query(func.count(User.name),User.name).group_by(User.name).all()
 
[(1,u'ed'), (1,u'fred'), (1,u'mary'), (1,u'wendy')]

为了实现简单计数SELECT count(*) FROM table,可以这么写:

session.query(func.count('*')).select_from(User).scalar()

如果我们明确表达计数是根据User表的主键的话,可以省略select_from(User):

session.query(func.count(User.id)).scalar()

上面两行结果均为4。

Go to (下)

10.建立联系(外键)

是时候考虑怎样映射和查询一个和Users表关联的第二张表了。假设我们系统的用户可以存储任意数量的email地址。我们需要定义一个新表Address与User相关联。

from sqlalchemyimport ForeignKey

from sqlalchemy.ormimport relationship, backref
class Address(Base):
__tablename__ = 'addresses'
id= Column(Integer, primary_key=True)
email_address = Column(String, nullable=False)
user_id = Column(Integer, ForeignKey('users.id'))
user = relationship("User", backref=backref('addresses',order_by=id))
def__repr__(self):
	return"<Address(email_address='%s')>"%self.email_address

构造类和外键简单,就不过多赘述。主要说明以下relationship()函数:这个函数告诉ORM,Address类应该和User类连接起来,通过使用addresses.user。relationship()使用外键明确这两张表的关系。决定Adderess.user属性是多对一的。relationship()的子函数backref()提供表达反向关系的细节:relationship()对象的集合被User.address引用。多对一的反向关系总是一对多。更多的细节参考Basic RelRational Patterns。

这两个互补关系:Address.user和User.addresses被称为双向关系。这是SQLAlchemy ORM的一个非常关键的功能。更多关系backref的细节参见Linking Relationships with Backref。

假设声明的方法已经开始使用,relationship()中和其他类关联的参数可以通过strings指定。在上文的User类中,一旦所有映射成功,为了产生实际的参数,这些字符串会被当做Python的表达式。下面是一个在User类中创建双向联系的例子:

class User(Base):
addresses = relationship("Address", order_by="Address.id", backref="user")

一些知识:

在大多数的外键约束(尽管不是所有的)关系数据库只能链接到一个主键列,或具有唯一约束的列。

外键约束如果是指向多个列的主键,并且它本身也具有多列,这种被称为“复合外键”。

外键列可以自动更新自己来相应它所引用的行或者列。这被称为级联,是一种建立在关系数据库的功能。

外键可以参考自己的表格。这种被称为“自引”外键。

我们需要在数据库中创建一个addresses表,所以我们会创建另一个元数据,这将会跳过已经创建的表。

11.操作主外键关联的对象

现在我们已经在User类中创建了一个空的addresser集合,可变集合类型,例如set和dict,都可以用,但是默认的集合类型是list。

jack = User(name='jack', fullname='Jack Bean', password='gjffdd')
jack.addresses
[]

现在可以直接在User对象中添加Address对象。只需要指定一个完整的列表:

jack.addresses = [Address(email_address='jack@google.com'),Address(email_address='j25@yahoo.com')]
当使用双向关系时,元素在一个类中被添加后便会自动在另一个类中添加。这种行为发生在Python的更改事件属性中而不是用SQL语句:
>>> jack.addresses[1]
<Address(email_address='j25@yahoo.com')>
>>> jack.addresses[1].user
<User(name='jack', fullname='Jack Bean', password='gjffdd')>
把jack提交到数据库中,再次查询Jack,(No SQL is yet issued for Jack’s addresses:)这句实在是翻译不了了,看看代码就明白是什么意思:
>>> jack = session.query(User).\
...
filter_by(name='jack').one()

>>> jack
<User(name='jack',fullname='Jack Bean', password='gjffdd')>
 
>>>jack.addresses 
[<Address(email_address='jack@google.com')>,
<Address(email_address='j25@yahoo.com')>]
当我们访问uaddresses集合时,SQL会被突然执行,这是一个延迟加载(lazy loading)关系的典型例子。现在addresses集合加载完成并且可以像对待普通列表一样对其进行操作。以后我们会优化这种加载方式。
12.使用JOINS查询
现在我们有了两张表,可以进行更多的查询操作,特别是怎样对两张表同时进行查询,Wikipediapage on SQL JOIN提供了很详细的说明,其中一些我们将在这里说明。之前用Query.filter()时,我们已经用过JOIN了,filter是一种简单的隐式join:
>>>for u, a in session.query(User, Address).filter(User.id==Address.user_id).filter(Address.email_address=='jack@google.com').all():   
    print u
    print a
<User(name='jack',fullname='JackBean', password='gjffdd')>
<Address(email_address='jack@google.com')>
用Query.join()方法会更加简单:
>>>session.query(User).join(Address).\
...
    filter(Address.email_address=='jack@google.com').\
...
    all() 
[<User(name='jack',fullname='JackBean', password='gjffdd')>]
之所以Query.join()知道怎么join两张表是因为它们之间只有一个外键。如果两张表中没有外键或者有一个以上的外键,当下列几种形式使用的时候,Query.join()可以表现的更好:
query.join(Address,User.id==Address.user_id)# 明确的条件
query.join(User.addresses)# 指定从左到右的关系
query.join(Address,User.addresses)    #同样,有明确的目标
query.join('addresses') # 同样,使用字符串
	outerjoin()和join()用法相同
query.outerjoin(User.addresses)# LEFT OUTER JOIN
12.1使用别名
当在多个表中查询时,如果同一张表需要被引用好几次,SQL通常要求对这个表起一个别名,因此,SQL可以区分对这个表进行的其他操作。Query也支持别名的操作。下面我们joinAddress实体两次,找到同时拥有两个不同email的用户:
>>>from sqlalchemy.ormimport aliased
>>>adalias1 = aliased(Address)
>>>adalias2 = aliased(Address)
>>>for username, email1, email2 in\
...
    session.query(User.name,adalias1.email_address,adalias2.email_address).\
...
    join(adalias1, User.addresses).\
...
    join(adalias2, User.addresses).\
...
    filter(adalias1.email_address=='jack@google.com').\
...
    filter(adalias2.email_address=='j25@yahoo.com'):
...
    print username, email1,
email2      
jack
jack@google.com j25@yahoo.com
12.1使用子查询(暂时理解不了啊,多看代码研究吧:()
from sqlalchemy.sqlimport func
stmt = session.query(Address.user_id,func.count('*').\
...
        label('address_count')).\
...
        group_by(Address.user_id).subquery()
>>>
for u, count in session.query(User,stmt.c.address_count).\
...
    outerjoin(stmt, User.id==stmt.c.user_id).order_by(User.id):
    print u, count
<User(name='ed',fullname='EdJones', password='f8s7ccs')>
None
<User(name='wendy',fullname='Wendy Williams', password='foobar')>
None
<User(name='mary',fullname='Mary Contrary', password='xxg527')>
None
<User(name='fred',fullname='Fred Flinstone', password='blah')>
None
<User(name='jack',fullname='Jack Bean', password='gjffdd')>
2
12.2从子查询中选择实体?
上面的代码中我们只返回了包含子查询的一个列的结果。如果想要子查询映射到一个实体的话,使用aliased()设置一个要映射类的子查询别名:
>>>
stmt = session.query(Address).\
...
     filter(Address.email_address!= 'j25@yahoo.com').\
...
     subquery()
>>>
adalias = aliased(Address, stmt)
#?为什么有两个参数?
>>>
for user, address in session.query(User, adalias).\
...
        join(adalias, User.addresses): 
...
    print user
...
    print address
<User(name='jack',fullname='Jack Bean', password='gjffdd')>
<Address(email_address='jack@google.com')>

12.3使用EXISTS(存在?)

如果表达式返回任何行,EXISTS为真,这是一个布尔值。它可以用在jions中,也可以用来定位在一个关系表中没有相应行的情况:

>>>from sqlalchemy.sqlimport exists
>>>
stmt = exists().where(Address.user_id==User.id)
>>>for name, in session.query(User.name).filter(stmt):
    print name
jack

等价于:

>>>for name, in session.query(User.name).\
...
   filter(User.addresses.any()):
  
...
    print name
jack

any()限制行匹配:

>>>for name, in session.query(User.name).\
...
   
filter(User.addresses.any(Address.email_address.like('%google%'))):
  
...
    print name
jack

has()和any()一样在应对多对一关系的情况下(注意“~“意味着”NOT”)

>>> session.query(Address).\
...
        filter(~Address.user.has(User.name=='jack')).all()

[]

12.4 常见的关系运算符

== != None 都是用在多对一中,而contains()用在一对多的集合中:

query.filter(Address.user == someuser)
query.filter(User.addresses.contains(someaddress))

Any()(用于集合中):

query.filter(User.addresses.any(Address.email_address == 'bar'))#also takes keyword arguments:
query.filter(User.addresses.any(email_address='bar'))

as()(用在标量?不在集合中):

query.filter(Address.user.has(name='ed'))

Query.with_parent()(所有关系都适用):

session.query(Address).with_parent(someuser,'addresses')

13 预先加载(跟性能有关)和lazy loading相对,建议直接查看文档吧

待补充。。。文章来源地址https://www.toymoban.com/news/detail-738525.html

SQLAlchemy技术文档(中文版)(全)

到了这里,关于SQLAlchemy技术文档(中文版)(全)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 中文版ChatGPT:智能中文聊天机器人

    2017年,AlphaGo在与世界冠军柯洁的人机大战中获胜,引发了人们对人工智能的激烈讨论。 如果说,对于AlphaGo,人们更多是围观者的角色,而最新的人工智能爆款程序ChatGPT,更多人已经参与其中,上线短短两个月内,ChatGPT收获了一亿用户。而且此刻,国内版的ChatGPT也已经正式

    2024年02月12日
    浏览(78)
  • idea中文版插件

    首先点击左上角的File-Settings 进入设置 进入Settings后点击Plugins,在搜索框输入Chinese language pack,点击install安装插件 下载成功后,点击installed,找到下载的汉化插件,点击Restart IDE,重启应用此插件。 重启后的页面 如果需要回到英文状态,只需要来到Plugins,找到已经安装的插

    2024年02月16日
    浏览(52)
  • BeeWare官方教程中文版

    BeeWare官方教程 中文文档下载地址 以下内容为按照教程在windows平台测试。 如果你使用Windows系统,可以从python官网获取官方安装包。可以使用3.7之后的任何稳定版本的Python。建议避免使用阿尔法,贝塔和其他已经发布的候选版本。 在Windows系统上构建BeeWare 需要: Git,一种分

    2024年02月05日
    浏览(52)
  • Windows Postman中文版

    下载安装Postman 安装中文包 下载Postman 最新版本下载 官方下载页面 下载链接:Win64 Win32 历史版本下载 请把下面链接的\\\"版本号\\\"替换为指定的版本号,例如:9.12.2 Windows64位 https://dl.pstmn.io/download/version/版本号/win64 Windows32位 https://dl.pstmn.io/download/version/版本号/win32 下载对应版本

    2024年02月14日
    浏览(53)
  • Jmeter如何设置中文版

    第一步:找到 apache-jmeter-5.4.3bin目录下的 jmeter.properties  第二步:打开 三,ctr+f 输入language=en,注释掉,增加以行修改如下 四,ctr+s 保存修改内容,重新打开jmeter就可以了

    2024年02月10日
    浏览(46)
  • RFC4861 中文版下

    路由器常量: 主机常量: 节点常量: 在第 4 节的消息格式中定义了其他协议常量。 所有协议常量可能会在未来版本中进行更改。 本规范中的常量可以被描述 IPv6 在不同链路层上运行的特定文档所覆盖。 此规则允许邻居发现在性能特性差异很大的各种链路上运行。 邻居发现受到

    2024年02月03日
    浏览(46)
  • ChatGPT 插件清单(中文版)

    整理了一份插件清单,部分插件可能已下线,也可能不在列表中。除了这份清单外,还整理了一份:超级牛逼的学习指南 欢迎大家转发、收藏、点赞支持!谨防失联! 插件名称 功能 基本提示 高级提示 KeyMate.AI搜索 使用AI驱动的自定义搜索引擎查找网页 “搜索关于可再生能

    2024年02月06日
    浏览(56)
  • chatgpt 中文版免费访问

    最近 chatgpt 太火了,用起来十分方便。 chatgpt 是一种基于人工智能技术的语言模型,可以通过分析用户输入的自然语言文本或语音,理解用户的意图并作出相应的回应。它被设计用于各种应用场景,例如智能客服、语音助手、智能家居控制、智能医疗、智能金融等领域。它可

    2024年02月01日
    浏览(64)
  • ChatGPT指令大全(中文版)

    我想让你扮演讲故事的角色。您将想出引人入胜、富有想象力和吸引观众的有趣故事。它可以是童话故事、教育故事或任何其他类型的故事,有可能吸引人们的注意力和想象力。根据目标受众,您可以为讲故事环节选择特定的主题或主题,例如,如果是儿童,则可以谈论动物

    2023年04月11日
    浏览(54)
  • Postman -中文版-安装教程

    一.下载、安装  Postman 下面是历史版本的下载链接地址    请把链接中的\\\"版本号\\\"替换为指定的版本号(根据自己的需求变更) Windows64位 : https://dl.pstmn.io/download/version/版本号/win64 Windows32位: https://dl.pstmn.io/download/version/版本号/win32 Mac : https://dl.pstmn.io/download/version/版本号

    2024年02月03日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包