pytorch复现_conv2d

这篇具有很好参考价值的文章主要介绍了pytorch复现_conv2d。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。



import numpy as np


def conv2d(inputs, kernels, bias, stride, padding):
    """
    正向卷积操作
    inputs: 输入数据,形状为 (C, H, W)
    kernels: 卷积核,形状为 (F, C, HH, WW),C是图片输入层数,F是图片输出层数
    bias: 偏置,形状为 (F,)
    stride: 步长
    padding: 填充
    """
    # 获取输入数据和卷积核的形状
    C, H, W = inputs.shape
    F, _, HH, WW = kernels.shape

    # 对输入数据进行填充。在第一个轴(通常是通道轴)上不进行填充,在第二个轴和第三个轴(通常是高度和宽度轴)上在开始和结束位置都填充padding个值。
    inputs_pad = np.pad(inputs, ((0, 0), (padding, padding), (padding, padding)))

    # 初始化输出数据,卷积后的图像size大小
    H_out = 1 + (H + 2 * padding - HH) // stride
    W_out = 1 + (W + 2 * padding - WW) // stride
    outputs = np.zeros((F, H_out, W_out))

    # 进行卷积操作
    for i in range(H_out):
        for j in range(W_out):  # 找到out图像对于的原始图像区域,然后对图像进行sum和bias
            inputs_slice = inputs_pad[:, i*stride:i*stride+HH, j*stride:j*stride+WW] 
            outputs[:, i, j] = np.sum(inputs_slice * kernels, axis=(1, 2, 3)) + bias
            # axis=(1, 2, 3)表示在通道、高度和宽度这三个轴上进行求和。
    return outputs

# test

# 创建模拟数据
inputs = np.random.rand(3, 5, 5)  # 3通道,5x5的输入数据
kernels = np.random.rand(4, 3, 3, 3)  # 4个输出通道,3通道的3x3卷积核
bias = np.random.rand(4)  # 4个偏置项
stride = 1
padding = 1

# 调用conv2d函数进行卷积操作
outputs = conv2d(inputs, kernels, bias, stride, padding)

# 打印卷积后的输出形状
print("卷积后的输出形状:", outputs.shape)

pytorch复现_conv2d,pytorch复现,pytorch,人工智能,python文章来源地址https://www.toymoban.com/news/detail-738770.html

到了这里,关于pytorch复现_conv2d的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Pytorch中的卷积与反卷积(conv2d和convTranspose2d)

    卷积是特征提取的常用操作,卷积可以改变图片的通道和大小,相比全连接操作,卷积可以减少计算量,并且充分融合图像的局部特征。    

    2024年02月06日
    浏览(38)
  • nn.Conv2d详解

    nn.Conv2d  是 PyTorch 中的一个卷积层,用于实现二维卷积操作。其主要参数有: in_channels :表示输入图像的通道数,也就是输入特征图的深度。 out_channels :表示输出特征图的通道数,也就是卷积核的个数。 kernel_size :表示卷积核的大小;可以是一个整数,表示正方形卷积核的

    2024年02月05日
    浏览(44)
  • 在树莓派上实现numpy的conv2d卷积神经网络做图像分类,加载pytorch的模型参数,推理mnist手写数字识别,并使用多进程加速

    这几天又在玩树莓派,先是搞了个物联网,又在尝试在树莓派上搞一些简单的神经网络,这次搞得是卷积识别mnist手写数字识别 训练代码在电脑上,cpu就能训练,很快的: 然后需要自己在dataset里导出一些图片:我保存在了mnist_pi文件夹下,“_”后面的是标签,主要是在pc端导

    2024年02月07日
    浏览(35)
  • 【知识点】nn.Conv2d参数设置

    reference   in_channels   这个很好理解,就是输入的四维张量[N, C, H, W]中的C了,即输入张量的channels数。这个形参是确定权重等可学习参数的shape所必需的。 out_channels   也很好理解,即期望的四维输出张量的channels数。 kernel_size   卷积核的大小,一般我们会使用5x5、3x3这

    2024年02月12日
    浏览(37)
  • pytorch之nn.Conv1d详解

    1、Conv1d 定义 class torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 自然语言处理中一个句子序列,一维的,所以使用Conv1d,此时卷积核(没有batch_size,参数是共享的)除去chanel,也是一维的。  2、参数  in_channels(int) – 输入信号的通道。在

    2024年02月16日
    浏览(45)
  • pytorch中nn.Conv1d功能介绍

            在使用Conv1d函数时,pytorch默认你的数据是一维的,比如一句话“深度学习”可以用一个一维数组 [\\\'深\\\', \\\'度\\\', \\\'学\\\', \\\'习\\\'] 表示,这个数据就是一维的。图片是二维数据,它有长宽两个维度。         因此在使用 Conv1d 函数时,输入是一个三位数组,三个维度分别表

    2024年02月10日
    浏览(46)
  • 【Pytorch】三维卷积 nn.Conv3d 用法

    nn.Conv3d 是 PyTorch 中实现三维卷积操作的类。 其输入和输出的维度如下: 输入维度: 输入张量的维度应为 (N, C_in, D, H, W) ,其中: N : 批量大小 (batch size),即一批输入数据中包含的样本数量。 C_in : 输入通道数 (number of input channels),即输入数据的通道数量,例如彩色图像通常

    2024年02月05日
    浏览(52)
  • CNN(一维卷积Conv1D)实现时间序列预测(PyTorch版)

    💥项目专栏:【深度学习时间序列预测案例】零基础入门经典深度学习时间序列预测项目实战(附代码+数据集+原理介绍)

    2024年02月01日
    浏览(44)
  • 【代码复现】Windows10复现nerf-pytorch

    由于这段时间正在学习NeRF系列的论文,所以博主决定尝试复现一下原文中实现的效果。 这篇文章将会介绍在win10系统下对NeRF的复现过程。最初是想复现原文作者Ben Mildenhall的源码,不过一直在编译环节报错,参考了几位大佬的blog之后发现是因为原作者使用了tensorflow 1.15,本

    2024年02月08日
    浏览(34)
  • pytorch实战3:基于pytorch复现VGG16

    前言 ​ 最近在看经典的卷积网络架构,打算自己尝试复现一下,在此系列文章中,会参考很多文章,有些已经忘记了出处,所以就不贴链接了,希望大家理解。 ​ 完整的代码在最后。 本系列必须的基础 ​ python基础知识、CNN原理知识、pytorch基础知识 本系列的目的 ​ 一是

    2024年02月08日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包