论文辅助笔记:T2VEC一个疑虑:stackingGRUCell和GRU的区别在哪里?

这篇具有很好参考价值的文章主要介绍了论文辅助笔记:T2VEC一个疑虑:stackingGRUCell和GRU的区别在哪里?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 stackingGRUCell

class StackingGRUCell(nn.Module):
    """
    Multi-layer CRU Cell
    """
    def __init__(self, input_size, hidden_size, num_layers, dropout):
        super(StackingGRUCell, self).__init__()
        self.num_layers = num_layers
        self.grus = nn.ModuleList()
        self.dropout = nn.Dropout(dropout)

        self.grus.append(nn.GRUCell(input_size, hidden_size))
        for i in range(1, num_layers):
            self.grus.append(nn.GRUCell(hidden_size, hidden_size))


    def forward(self, input, h0):
        """
        Input:
        input (batch, input_size): input tensor
        h0 (num_layers, batch, hidden_size): initial hidden state
        ---
        Output:
        output (batch, hidden_size): the final layer output tensor
        hn (num_layers, batch, hidden_size): the hidden state of each layer
        """
        hn = []
        output = input
        for i, gru in enumerate(self.grus):
            hn_i = gru(output, h0[i])
            #在每一次循环中,输入output会经过一个GRU单元并更新隐藏状态

            hn.append(hn_i)
            if i != self.num_layers - 1:
                output = self.dropout(hn_i)
            else:
                output = hn_i
            #如果不是最后一层,输出会经过一个dropout层。

        hn = torch.stack(hn)
        #将hn列表转变为一个张量
        return output, hn
  • nn.GRU中,hn表示每层的最后一个时间步的隐藏状态。这意味着,对于一个具有seq_len的输入序列,hn会包含每层的seq_len时间步中的最后一个时间步的隐藏状态。
  • StackingGRUCell中,hn是通过每层的GRUCell为给定的单一时间步计算得到的。
  • 所以,如果seq_len为1,那么nn.GRUhnStackingGRUCellhn应该是相同的?output更应是如此

2 作为对比的普通GRU

啥也没有的一个普通GRU:

class StackingGRU_tst(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, dropout):
        super(StackingGRU_tst, self).__init__()
        self.gru = nn.GRU(input_size, hidden_size, num_layers=num_layers, dropout=dropout, batch_first=True)

    def forward(self, input, h0):
        output, hn = self.gru(input, h0)
        return output, hn
input_size = 5
hidden_size = 10
num_layers = 3
dropout = 0.1
batch_size = 7

3 二者对比前的一些工作

3.1 创建模型 

gru_cell_model = StackingGRUCell(input_size, hidden_size, num_layers, dropout)
gru_cell_model
'''
StackingGRUCell(
  (grus): ModuleList(
    (0): GRUCell(5, 10)
    (1): GRUCell(10, 10)
    (2): GRUCell(10, 10)
  )
  (dropout): Dropout(p=0.1, inplace=False)
)
'''

gru_model = nn.GRU(input_size, hidden_size, num_layers, dropout=dropout)
gru_model
'''
GRU(5, 10, num_layers=3, dropout=0.1)
'''

3.2 参数复制: 

with torch.no_grad():
    for i in range(num_layers):
        # 对于每一层,复制权重和偏置
        getattr(gru_model, 'weight_ih_l' + str(i)).copy_(gru_cell_model.grus[i].weight_ih)
        getattr(gru_model, 'weight_hh_l' + str(i)).copy_(gru_cell_model.grus[i].weight_hh)
        getattr(gru_model, 'bias_ih_l' + str(i)).copy_(gru_cell_model.grus[i].bias_ih)
        getattr(gru_model, 'bias_hh_l' + str(i)).copy_(gru_cell_model.grus[i].bias_hh)

3.3 设置输入和相同的初始hidden state

input_data = torch.randn(batch_size, input_size)
h0_cell = torch.randn(num_layers, batch_size, hidden_size)
h0_gru = h0_cell.clone()  # 确保从相同的初始状态开始

3.4 分别生成输出结果

由于有dropping的存在,所以每次前向传播之前,都需要设置相同的随机种子

torch.manual_seed(1215)
output_cell, hn_cell = gru_cell_model(input_data, h0_cell)
torch.manual_seed(1215)
output_gru, hn_gru = gru_model(input_data.unsqueeze(0), h0_gru)

4 比较结果


torch.allclose(output_cell, output_gru.squeeze(0)),torch.allclose(hn_cell, hn_gru)

#(True, True)

结果是一样的的,所以似乎论文代码里的stackingGRUCell可以被GRU平替?文章来源地址https://www.toymoban.com/news/detail-738902.html

到了这里,关于论文辅助笔记:T2VEC一个疑虑:stackingGRUCell和GRU的区别在哪里?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习笔记--DeepWalk和Node2Vec图嵌入代码实战一

    CS224W公开课:双语字幕 斯坦福CS224W《图机器学习》课程(2021) by Jure Leskove 官方课程主页:官方主页 子豪兄精讲:斯坦福CS224W图机器学习、图神经网络、知识图谱 同济子豪兄 子豪兄公开代码:同济子豪兄CS224W公开课 基于图的项目: 读论文、搜论文、做笔记、吐槽论文的社区

    2024年02月03日
    浏览(38)
  • 深度学习笔记之Transformer(五) Position Embedding铺垫:Word2vec

    在Transformer(三)自注意力机制一节中介绍了 位置编码 ( Position Embedding ) (text{Position Embedding}) ( Position Embedding ) ,本系列针对位置编码 再回首 ,从公式角度重新认识位置编码。本节作为铺垫,介绍一下 词向量 模型—— Word2vec text{Word2vec} Word2vec 。 在循环神经网络简单示例中

    2024年02月13日
    浏览(35)
  • Transformer通俗笔记:从Word2Vec、Seq2Seq逐步理解到GPT、BERT

    我在写上一篇博客《22下半年》时,有读者在文章下面评论道:“july大神,请问BERT的通俗理解还做吗?”,我当时给他发了张俊林老师的BERT文章,所以没太在意。 直到今天早上,刷到CSDN上一篇讲BERT的文章,号称一文读懂,我读下来之后,假定我是初学者,读不懂。 关于

    2024年02月02日
    浏览(34)
  • Word2Vec详解

    Word2Vec 基本思想:通过训练将每一个词映射成一个固定长度的向量,所有向量构成一个词向量空间,每一个向量(单词)可以看作是向量空间中的一个点,意思越相近的单词距离越近。 如何把词转换为向量? 通常情况下,我们可以维护一个查询表。表中每一行都存储了一个特

    2024年02月13日
    浏览(44)
  • 机器学习——Word2Vec

    参考资料: https://zhuanlan.zhihu.com/p/114538417 https://www.cnblogs.com/pinard/p/7243513.html 统计语言模型是基于 语料库 构建的 概率模型 ,用来计算一个词串 W = ( w 1 , w 2 , ⋯   , w T ) W=(w_1,w_2,cdots,w_T) W = ( w 1 ​ , w 2 ​ , ⋯ , w T ​ ) 构成句子的概率 : p ( W ) = p ( w 1 , w 2 , ⋯   . w T ) = p

    2024年02月11日
    浏览(43)
  • 大语言模型系列-word2vec

    在前文大语言模型系列-总述已经提到传统NLP的一般流程: 传统的分词向量化的手段是进行简单编码(如one-hot),存在如下缺点: 如果词库过大, one-hot编码生成的向量会造成维度灾难 one-hot编码生成的向量是稀疏的,它们之间的距离相等,无法捕捉单词之间的语义关系。

    2024年01月18日
    浏览(37)
  • Word2Vec实现文本识别分类

    🍨 本文为🔗365天深度学习训练营 中的学习记录博客 🍦 参考文章:365天深度学习训练营-第N4周:用Word2Vec实现文本分类 🍖 原作者:K同学啊|接辅导、项目定制 语言环境:Python3.9.12 编译器:jupyter notebook 深度学习环境:TensorFlow2 本次内容我本来是使用miniconda的环境的,但是好

    2024年02月16日
    浏览(43)
  • Word2Vec的CBOW模型

    Word2Vec中的CBOW(Continuous Bag of Words)模型是一种用于学习词向量的神经网络模型。CBOW的核心思想是根据上下文中的周围单词来预测目标单词。 例如,对于句子“The cat climbed up the tree”,如果窗口大小为5,那么当中心单词为“climbed”时,上下文单词为“The”、“cat”、“up”

    2024年02月02日
    浏览(47)
  • 一文了解Word2vec 阐述训练流程

      在机器学习领域,嵌入(embeddings)的概念无疑是其中最令人兴奋的创新之一。想象一下,每当你与 Siri 、 Google Assistant 、 Alexa 或 Google Translate 互动,甚至在使用具有下一个词预测功能的手机输入法(比如苹果输入法、搜狗输入法)时,你其实都在享受词嵌入模型带来的

    2024年02月05日
    浏览(48)
  • 【NLP】Word2Vec原理和认识

            Word2Vec是NLP领域的最新突破。Tomas Mikolov是捷克计算机科学家,目前是CIIRC(捷克信息学,机器人和控制论研究所)的研究员,是word2vec研究和实施的主要贡献者之一。词嵌入是解决NLP中许多问题不可或缺的一部分。它们描绘了人类如何向机器理解语言。您可以将它

    2024年02月12日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包