刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行)

这篇具有很好参考价值的文章主要介绍了刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.运行效果:刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损)_哔哩哔哩_bilibili

环境库:

NumPy 版本: 1.19.4
Pandas 版本: 0.23.4
Matplotlib 版本: 2.2.3
Keras 版本: 2.4.0
TensorFlow 版本: 2.4.0
sklearn  版本: 0.19.2

如果库版本不一样, 一般也可以运行,这里展示我运行时候的库版本,是为了防止你万一在你的电脑上面运行不了,可以按照我的库版本进行安装并运行 

2.数据集介绍

试验数据来源于美国纽约预测与健康管理学 会(PHM)2010年高 速 数 控 机 床 刀 具 健 康 预 测 竞 赛的开放数据。数据集下载链接

链接:https://pan.baidu.com/s/17GbX52SlPScsv0G7fDp5dQ 
提取码:4561

实验条件如表格 所示 

刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行),诊断领域创新代码,lstm,人工智能,rnn

实验数据获取的形式是:   试验在上述切削条件下重复进行 6 次全寿命周期试验。端面铣削材料为正方形, 每次走刀端
 面铣的长度为 108mm 且 每 次 走 刀 时 间 相 等 , 每次走刀后测量刀具的后刀面磨损量。试验监测数据有x、y 、 z 三向
 铣削力信号 , x 、 y 、 z 三向铣削振动信号以及声发射均方根值。
  6次的数据集中  3次实验中有测量铣刀的磨损量,其他3次没有测量,作为比赛的测试集。

文件c1、c4、c6为训练数据,文件c2、c3、c5为测试数据:

第1列:X维力(N)
第2列:Y维力(N)
第3列:Z维力(N)
第4列:X维振动(g)
第5列:Y维振动(g)
第6列:Z维振动(g)
第7列:AE-RMS (V)

刀具主轴转速为10400 RPM;进给速度1555 mm/min;切割Y深度(径向)为0.125 mm;
Z轴向切割深度为0.2 mm。数据以50khz /通道采集。


  系统测量的实验条件和实验方式如下所示:

刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行),诊断领域创新代码,lstm,人工智能,rnn

刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行),诊断领域创新代码,lstm,人工智能,rnn

3.本次项目介绍 

刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行),诊断领域创新代码,lstm,人工智能,rnn

c1为数据集

version.py是查看你本地环境库的版本,为了方便你运行代码写的脚本

MSCNN_LSTM_Attention.py是读取原始数据,预处理,磨损状态分类的主程序。

数据量较大,因为本地电脑配置一般, 所以只用了c1数据集进行实验,只需要修改数据集路径,也可以调用c2-c6数据集。

数据集一共有315个表格

数据集开始位置

刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行),诊断领域创新代码,lstm,人工智能,rnn

数据集截止位置:

刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行),诊断领域创新代码,lstm,人工智能,rnn

参考知网论文:《基于改进卷积门控循环神经网络的刀具磨损状态识别》一文中,对初期磨损、正常磨损、急剧磨损的划分,取1-54为初期磨损,55-205为正常磨损、206-315为急剧磨损

刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行),诊断领域创新代码,lstm,人工智能,rnn

数据预处理:

采用的数据是每个表格的第四列数据,即X维振动信号。如果想做数据融合(即把Y维和Z维振动信号也用上,可以私信定制)

刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行),诊断领域创新代码,lstm,人工智能,rnn

对原始数据归一化后,采用10000的样本长度不重叠切割样本, 这次为做平衡数据集下的实验,每种状态取1000个样本。

实验部分:

训练集与测试集的比例:4:1

批量:64

优化器:Adam

学习率:0.001

模型(MSCNN_LSTM_Attention,每个样本的形状原为(10000,1),但是为了让网络训练更快,目前代码中变形为(250,40),两个输入形式在代码中都可以使用,只要稍微改动一下即可

刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行),诊断领域创新代码,lstm,人工智能,rnn

刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行),诊断领域创新代码,lstm,人工智能,rnn 特征(训练集和测试集)形状

刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行),诊断领域创新代码,lstm,人工智能,rnn

 标签(训练集和测试集)形状

刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行),诊断领域创新代码,lstm,人工智能,rnn

4.效果(测试集准确率100个epoch训练完为94.67%)

刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行),诊断领域创新代码,lstm,人工智能,rnn

刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行),诊断领域创新代码,lstm,人工智能,rnn

测试集混淆矩阵 (以百分比形式展示)

刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行),诊断领域创新代码,lstm,人工智能,rnn

测试集混淆矩阵(以个数为展示) 

刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行),诊断领域创新代码,lstm,人工智能,rnn

对项目感兴趣的,可以关注最后一行文章来源地址https://www.toymoban.com/news/detail-738991.html


import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import keras
import tensorflow as tf
from sklearn import __version__ as sklearn_version
from matplotlib import __version__ as matplotlib_version

print(f"NumPy 版本: {np.__version__}")
print(f"Pandas 版本: {pd.__version__}")
print(f"Matplotlib 版本: {matplotlib_version}")
print(f"Keras 版本: {keras.__version__}")
print(f"TensorFlow 版本: {tf.__version__}")
print(f"sklearn  版本: {sklearn_version}")
#数据集和代码压缩包:https://mbd.pub/o/bread/ZZWblphr

到了这里,关于刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python图像文字识别详解,实战代码

    📚 个人网站:ipengtao.com 在现代计算机视觉和图像处理应用中,文字识别是一个重要的任务。本篇博客将详细介绍如何使用Python中的文字识别库,以及一些优秀的开源工具,来实现对图片中文字的准确识别。通过丰富的示例代码和详尽的解释,读者将能够全面了解文字识别的

    2024年02月03日
    浏览(45)
  • 如何使用 Python 检测和识别车牌(附 Python 代码)

    车牌检测与识别技术用途广泛,可以用于道路系统、无票停车场、车辆门禁等。这项技术结合了计算机视觉和人工智能。 本文将使用Python创建一个车牌检测和识别程序。该程序对输入图像进行处理,检测和识别车牌,最后显示车牌字符,作为输出内容。 要轻松地完成本教程

    2024年01月18日
    浏览(44)
  • 【语音识别入门】特征提取(Python完整代码)

    1.1数字信号处理基础 在科学和工程中遇到的大多数信号都是连续模拟信号,例如电压随着时间变化,一天中温度的变化等等,而计算机智能处理离散的信号,因此必须对这些连续的模拟信号进行转化。通过 采样–量化 来转换成数字信号。 以 正弦波 为例: x ( t ) = s i n ( 2 Π

    2024年01月17日
    浏览(36)
  • 验证码滑块识别算法 100% 识别 思路简单(附算法 python 代码)

      最开始的识别思路是通过模板来找到这个验证码的滑块图像所在的位置,但是使用下来发现准确率在90%左右一起提不上去,无论怎么优化都无法提高,后来发现了一个奇特的思路可用完美解决这个验证码的问题,思路写在了代码里面,最后返回的结果是需要移动的滑块的左

    2024年02月19日
    浏览(39)
  • 回声状态网络(Echo State Networks,ESN)详细原理讲解及Python代码实现

    回声状态网络是一种循环神经网络。ESN 训练方式与传统 RNN 不同。网络结构如下图: (1)储层(Reservoir):中文翻译有叫储备池、储层、储蓄池等等各种名称。ESN 中的储层是互连神经元的集合,其中连接及其权重是随机初始化和固定的。该储层充当动态储层,其目的是将输

    2024年04月17日
    浏览(41)
  • 检测和识别车牌的python的简单示例代码

    然后用下面的代码: 先读取一张车牌图像,将其转换为灰度图像,用Canny算法进行边缘检测。然后,用OpenCV的findContours函数找到图像中的轮廓,根据车牌的宽高比和大小进行筛选,把符合条件的车牌图像截取出来。最后,使用Tesseract OCR引擎对截取出来的车牌图像进行识别,并

    2024年02月11日
    浏览(93)
  • 图标点选验证码识别---python破解代码

    在线测试:http://121.4.108.95:8000/index/ 开源地址:https://github.com/Bump-mann/simple_ocr 首先我们看一个较简单的图标点选验证码 从上面图片中依次点击以下图形 笔者的思路(其实就是对着别人的抄)是先识别出图形切割下来,然后分别对比相似度,就可以得出需要点击位置啦~ 模型下

    2024年02月11日
    浏览(44)
  • Python代码识别minist手写数字【附pdf】

    一、概述 对于人类而言,要识别图片中的数字是一件很容易的事情,但是,如何让机器学会理解图片上的数字,这似乎并不容易。那么,能否找出一个函数(模型),通过输入相关的信息,最终得到期望的结果呢? 二、python代码实现中涉及的输入输出内容: 输入:mnist数据

    2024年04月14日
    浏览(36)
  • 用Python在25行以下代码实现人脸识别

    ** ** OpenCV是最流行的计算机视觉库。最初是用C/C++编写的,现在它提供了Python的API。 OpenCV使用机器学习算法来搜索图片中的面孔。因为脸是如此复杂,没有一个简单的测试可以告诉你它是否找到了一张脸。相反,有成千上万的小模式和特征必须匹配。这些算法将识别人脸的任

    2024年02月02日
    浏览(44)
  • FANUC 0I 系列打开系统刀具寿命管理功能

    刀具寿命管理功能是FANUC系统自带的一种比较实用的功能,在刀具寿命管理画面中设定每把刀的使用寿命,当刀具使用寿命到达设定寿命时,系统就会发出刀具寿命到达报警,提醒操作者及时更换刀具,避免因刀具磨损严重导致加工工件报废。 刀具寿命管理功能属于FANUC系统

    2024年02月05日
    浏览(70)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包