自学SLAM(6)相机与图像实践:OpenCV处理图像与图像拼接(点云)

这篇具有很好参考价值的文章主要介绍了自学SLAM(6)相机与图像实践:OpenCV处理图像与图像拼接(点云)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

如果写过SLAM14讲第一次的作业,或者看过我之前的运行ORB_SLAM2教程应该都安装过OpenCV了,如果没有安装,没关系,可以看我之前的博客,里面有如何安装OpenCV。
链接: 运行ORB-SLAM2(含OpenCV的安装)


1.OpenCV的图像操作

让我们先来看一段代码,学习一下OpenCV的函数调用。
改代码中,演示了如下几个操作:图像读取,显示,像素遍历,复制,赋值等。大部分的注解已经写在代码中。编译该程序时,需要在CMakeLists.txt中添加OpenCV的头文件,然后将程序链接到库文件上。

imageBasics.cpp:

#include <iostream>
#include <chrono>
using namespace std;

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

int main ( int argc, char** argv )
{
    // 读取argv[1]指定的图像
    cv::Mat image;
    image = cv::imread ( argv[1] ); //cv::imread函数读取指定路径下的图像
    // 判断图像文件是否正确读取
    if ( image.data == nullptr ) //数据不存在,可能是文件不存在
    {
        cerr<<"文件"<<argv[1]<<"不存在."<<endl;
        return 0;
    }
    
    // 文件顺利读取, 首先输出一些基本信息
    cout<<"图像宽为"<<image.cols<<",高为"<<image.rows<<",通道数为"<<image.channels()<<endl;
    cv::imshow ( "image", image );      // 用cv::imshow显示图像
    cv::waitKey ( 0 );                  // 暂停程序,等待一个按键输入
    // 判断image的类型
    if ( image.type() != CV_8UC1 && image.type() != CV_8UC3 )
    {
        // 图像类型不符合要求
        cout<<"请输入一张彩色图或灰度图."<<endl;
        return 0;
    }

    // 遍历图像, 请注意以下遍历方式亦可使用于随机像素访问
    // 使用 std::chrono 来给算法计时
    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
    for ( size_t y=0; y<image.rows; y++ )
    {
        // 用cv::Mat::ptr获得图像的行指针
        unsigned char* row_ptr = image.ptr<unsigned char> ( y );  // row_ptr是第y行的头指针
        for ( size_t x=0; x<image.cols; x++ )
        {
            // 访问位于 x,y 处的像素
            unsigned char* data_ptr = &row_ptr[ x*image.channels() ]; // data_ptr 指向待访问的像素数据
            // 输出该像素的每个通道,如果是灰度图就只有一个通道
            for ( int c = 0; c != image.channels(); c++ )
            {
                unsigned char data = data_ptr[c]; // data为I(x,y)第c个通道的值
            }
        }
    }
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>( t2-t1 );
    cout<<"遍历图像用时:"<<time_used.count()<<" 秒。"<<endl;

    // 关于 cv::Mat 的拷贝
    // 直接赋值并不会拷贝数据
    cv::Mat image_another = image;
    // 修改 image_another 会导致 image 发生变化
    image_another ( cv::Rect ( 0,0,100,100 ) ).setTo ( 0 ); // 将左上角100*100的块置零
    cv::imshow ( "image", image );
    cv::waitKey ( 0 );
    
    // 使用clone函数来拷贝数据
    cv::Mat image_clone = image.clone();
    image_clone ( cv::Rect ( 0,0,100,100 ) ).setTo ( 255 );
    cv::imshow ( "image", image );
    cv::imshow ( "image_clone", image_clone );
    cv::waitKey ( 0 );

    // 对于图像还有很多基本的操作,如剪切,旋转,缩放等,限于篇幅就不一一介绍了,请参看OpenCV官方文档查询每个函数的调用方法.
    cv::destroyAllWindows();
    return 0;
}

CMakeLists.txt:

cmake_minimum_required( VERSION 2.8 )
project( imageBasics )

# 添加c++ 11标准支持
set( CMAKE_CXX_FLAGS "-std=c++11" )

# 寻找OpenCV库
find_package( OpenCV 3 REQUIRED )
# 添加头文件
include_directories( ${OpenCV_INCLUDE_DIRS} )

add_executable( imageBasics imageBasics.cpp )
# 链接OpenCV库
target_link_libraries( imageBasics ${OpenCV_LIBS} )

然后我们尝试使用OpenCV打开一张图片:
自学SLAM(6)相机与图像实践:OpenCV处理图像与图像拼接(点云),视觉SLAM,数码相机,opencv,人工智能,视觉SLAM
自学SLAM(6)相机与图像实践:OpenCV处理图像与图像拼接(点云),视觉SLAM,数码相机,opencv,人工智能,视觉SLAM

2.使用OpenCV进行RGB-D图像拼接(点云)

自学SLAM(6)相机与图像实践:OpenCV处理图像与图像拼接(点云),视觉SLAM,数码相机,opencv,人工智能,视觉SLAM
joinMap.cpp:

#include <iostream>
#include <fstream>
using namespace std;
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <Eigen/Geometry> 
#include <boost/format.hpp>  // for formating strings
#include <pcl/point_types.h> 
#include <pcl/io/pcd_io.h> 
#include <pcl/visualization/pcl_visualizer.h>
 
int main( int argc, char** argv )
{
    vector<cv::Mat> colorImgs, depthImgs;    // colorImgs:彩色图;depthImgs:深度图
    vector<Eigen::Isometry3d, Eigen::aligned_allocator<Eigen::Isometry3d>> poses;   // 相机位姿
    
	//iftream的对象假设为fin,fin在读取数据的时候会根据你的输出对象来选择输出的方式。
    ifstream fin("./pose.txt");
    if (!fin)
    {
        cerr<<"请在有pose.txt的目录下运行此程序"<<endl;
        return 1;
    }
    
    for ( int i=0; i<5; i++ )
    {
        boost::format fmt( "./%s/%d.%s" ); //图像文件格式
        colorImgs.push_back( cv::imread( (fmt%"color"%(i+1)%"png").str() ));
		/*
		cv::Mat img =cv::imread(argv[1],-1)
		函数原型Mat imread( const String& filename, int flags = IMREAD_COLOR );
		第一个参数是图片的绝对地址;
		第二个参数表示图片读入的方式(flags可以缺省,缺省时flags=1,表示以彩色图片方式读入图片);
		flags>0时表示以彩色方式读入图片;
		flags=0时表示以灰度图方式读入图片;
		flags<0时表示以图片的本来的格式读入图片;
		*/
        depthImgs.push_back( cv::imread( (fmt%"depth"%(i+1)%"pgm").str(), -1 )); // 使用-1读取原始图像
        
        double data[7] = {0};
        for ( auto& d:data )
            fin>>d; //将深度值文件一行一行读进d中
        Eigen::Quaterniond q( data[6], data[3], data[4], data[5] ); //旋转四元数
        Eigen::Isometry3d T(q);
        T.pretranslate( Eigen::Vector3d( data[0], data[1], data[2] )); //平移向量
        poses.push_back( T );
    }
    
    // 计算点云并拼接
    // 相机内参 
    double cx = 325.5;
    double cy = 253.5;
    double fx = 518.0;
    double fy = 519.0;
    double depthScale = 1000.0;
    
    cout<<"正在将图像转换为点云..."<<endl;
    
    // 定义点云使用的格式:这里用的是XYZRGB
    typedef pcl::PointXYZRGB PointT; 
    typedef pcl::PointCloud<PointT> PointCloud;
    
    // 新建一个点云
    PointCloud::Ptr pointCloud( new PointCloud ); 
    for ( int i=0; i<5; i++ )
    {
        cout<<"转换图像中: "<<i+1<<endl; 
        cv::Mat color = colorImgs[i]; //像素值 
        cv::Mat depth = depthImgs[i]; //每个像素值对应的深度值
        Eigen::Isometry3d T = poses[i]; //每张图片对应的位姿
        for ( int v=0; v<color.rows; v++ )
            for ( int u=0; u<color.cols; u++ )
            {
                unsigned int d = depth.ptr<unsigned short> ( v )[u]; // 深度值
				/*
				d==0:表示该像素点没有深度值(不可能),所以就抛弃该点,不再计算相机坐标系下的坐标值(X,Y,Z)
				*/
                if ( d==0 ) continue; // 为0表示没有测量到
				
                //point:相机坐标系下的坐标值(X,Y,Z)
				Eigen::Vector3d point; 
                point[2] = double(d)/depthScale; 
                point[0] = (u-cx)*point[2]/fx;
                point[1] = (v-cy)*point[2]/fy; 
				
				// pointWorld:世界坐标
                Eigen::Vector3d pointWorld = T*point;
                
				// p:点云(每个点云按照[XYZRGB]的格式表示)
                PointT p ;
                p.x = pointWorld[0];
                p.y = pointWorld[1];
                p.z = pointWorld[2];
                p.b = color.data[ v*color.step+u*color.channels() ];
                p.g = color.data[ v*color.step+u*color.channels()+1 ];
                p.r = color.data[ v*color.step+u*color.channels()+2 ];
                pointCloud->points.push_back( p );
            }
    }
    
    pointCloud->is_dense = false;
    cout<<"点云共有"<<pointCloud->size()<<"个点."<<endl;
    pcl::io::savePCDFileBinary("map.pcd", *pointCloud );
    return 0;
}

CMakeLists.txt:

cmake_minimum_required( VERSION 2.8 )
project( joinMap )
 
set( CMAKE_BUILD_TYPE Release )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )
 
# opencv 
find_package( OpenCV REQUIRED )
include_directories( ${OpenCV_INCLUDE_DIRS} )
 
# eigen 
include_directories( "/usr/include/eigen3/" )
 
# pcl 
find_package( PCL REQUIRED COMPONENT common io )
include_directories( ${PCL_INCLUDE_DIRS} )
add_definitions( ${PCL_DEFINITIONS} )
 
add_executable( joinMap joinMap.cpp )
target_link_libraries( joinMap ${OpenCV_LIBS} ${PCL_LIBRARIES} )

这里点云我们用的是pcl的库,所以需要安装一些pcl的库

安装命令如下:

sudo apt-get install libpcl-dev
sudo apt-get install pcl-tools

然后就可以进行编译,进入我们创建的build文件夹

cmake ..
make
cd ..
build/joinMap 
pcl_viewer map.pcd 

点云图就出来了:

自学SLAM(6)相机与图像实践:OpenCV处理图像与图像拼接(点云),视觉SLAM,数码相机,opencv,人工智能,视觉SLAM
放大点云图:
自学SLAM(6)相机与图像实践:OpenCV处理图像与图像拼接(点云),视觉SLAM,数码相机,opencv,人工智能,视觉SLAM文章来源地址https://www.toymoban.com/news/detail-739101.html

到了这里,关于自学SLAM(6)相机与图像实践:OpenCV处理图像与图像拼接(点云)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【计算机视觉—python 】 图像处理入门教程 —— 图像属性、像素编辑、创建与复制、裁剪与拼接【 openCV 学习笔记 005 to 010 and 255】

    OpenCV中读取图像文件后的数据结构符合Numpy的ndarray多维数组结构,因此 ndarray 数组的属性和操作方法可用于图像处理的一些操作。数据结构如下图所示: img.ndim:查看代表图像的维度。彩色图像的维数为3,灰度图像的维度为2。 img.shape:查看图像的形状,代表矩阵的行数(高

    2024年01月19日
    浏览(65)
  • SLAM算法与工程实践——相机篇:传统相机使用(1)

    下面是SLAM算法与工程实践系列文章的总链接,本人发表这个系列的文章链接均收录于此 下面是专栏地址: 这个系列的文章是分享SLAM相关技术算法的学习和工程实践 插上USB相机,使用命令查看USB设备 可以识别相机 使用命令查看识别到几个摄像头 然后改变其权限 安装 v4l-u

    2024年02月21日
    浏览(31)
  • OpenCV 图像处理算法和技术的应用实践

    图像处理算法和技术在计算机视觉和图像处理领域发挥着重要作用,通过对图像进行分析、增强和转换,可以提取出有用的信息并解决实际问题。本文将以图像处理算法和技术的应用实践为中心,为你介绍一些常见的图像处理算法和技术,并通过实例展示它们在实际应用中的

    2024年02月16日
    浏览(44)
  • 视觉SLAM理论到实践系列(四)——相机模型

    下面是《视觉SLAM十四讲》学习笔记的系列记录的总链接,本人发表这个系列的文章链接均收录于此 下面是专栏地址: 高翔博士的《视觉SLAM14讲》学习笔记的系列记录 相机将三维世界中的坐标点(单位为米)映射到二维图像平面(单位为像素)的过程能够用一个几何模型进行

    2024年02月04日
    浏览(37)
  • SLAM算法与工程实践——相机篇:RealSense T265相机使用(1)

    下面是SLAM算法与工程实践系列文章的总链接,本人发表这个系列的文章链接均收录于此 下面是专栏地址: 这个系列的文章是分享SLAM相关技术算法的学习和工程实践 参考: Z410-4B-T265视觉版教程 Intel Realsense T265使用教程 realsense官方文档:https://dev.intelrealsense.com/docs/code-sample

    2024年04月25日
    浏览(34)
  • SLAM算法与工程实践——相机篇:RealSense T265相机使用(2)

    下面是SLAM算法与工程实践系列文章的总链接,本人发表这个系列的文章链接均收录于此 下面是专栏地址: 这个系列的文章是分享SLAM相关技术算法的学习和工程实践 参考: 一文讲透鱼眼相机畸变矫正,及目标检测项目应用 一文讲透鱼眼相机畸变矫正,及目标检测项目应用

    2024年01月18日
    浏览(53)
  • OpenCV 优化和改进图像处理应用功能的方法与实践

    图像处理应用是计算机视觉和图像处理领域的关键应用之一,通过对图像进行处理和分析,可以提取有用的信息、改善图像质量、实现目标检测等功能。然而,在实际应用中,优化和改进图像处理应用功能是一个持续的过程。本文将以优化和改进图像处理应用功能为中心,为

    2024年02月16日
    浏览(39)
  • 数字图像处理(实践篇)二十九 OpenCV-Python在图像中检测矩形、正方形和三角形的实践

    目录 1 方案 2 实践 1 方案 ①检测矩形和正方形 ⒈检测图像中的所有轮廓。 ⒉循环检查所有检测到的轮廓。 ⒊为每个轮廓找到近似的轮廓。如果近似轮廓中的顶点数为4,则计算 宽高比 用来区分 矩形 和 正方形 。如果宽高比在0.9到1.1之间,则认为为正方形,否则的话,则为

    2024年01月25日
    浏览(54)
  • 《视觉 SLAM 十四讲》V2 第 5 讲 相机与图像

    空间点 投影到 相机成像平面 前面内容总结: 1、机器人如何表示自身位姿 视觉SLAM: 观测 主要是指 相机成像 的过程 。 投影过程描述: 针孔 + 畸变 相机 内参 外参 像素坐标系 与 成像平面之间,相差了一个缩放 和一个原点的平移。 像素坐标系: 原点 o ′ o^{prime} o ′ 位

    2024年02月07日
    浏览(43)
  • SLAM算法与工程实践——相机篇:RealSense D435使用(2)

    下面是SLAM算法与工程实践系列文章的总链接,本人发表这个系列的文章链接均收录于此 下面是专栏地址: 这个系列的文章是分享SLAM相关技术算法的学习和工程实践 参考: realsense相机两种获取相机内外参的方式 使用Realsense D435i运行VINS-Fusion kalibr标定realsenseD435i --多相机标定

    2024年02月03日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包