Verilog刷题[hdlbits] :Module add

这篇具有很好参考价值的文章主要介绍了Verilog刷题[hdlbits] :Module add。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

题目:Module add

You are given a module add16 that performs a 16-bit addition. Instantiate two of them to create a 32-bit adder. One add16 module computes the lower 16 bits of the addition result, while the second add16 module computes the upper 16 bits of the result, after receiving the carry-out from the first adder. Your 32-bit adder does not need to handle carry-in (assume 0) or carry-out (ignored), but the internal modules need to in order to function correctly. (In other words, the add16 module performs 16-bit a + b + cin, while your module performs 32-bit a + b).

  • 您将获得一个执行16位加法的模块add16。实例化其中两个以创建一个32位加法器。一个add16模块计算加法结果的下16位,而第二个add16模块在接收到第一个加法器的执行后计算结果的上16位。您的32位加法器不需要处理低位向本位的进位输入信号(假设为0)或本位向高位的进位输出信号(忽略),但内部模块需要这样做才能正常工作。(换句话说,add16模块执行16位a + b + cin,而您的模块执行32位a + b)。

Connect the modules together as shown in the diagram below. The provided module add16 has the following declaration:文章来源地址https://www.toymoban.com/news/detail-739179.html

  • 将模块连接在一起,如下图所示。所提供的模块add16有以下声明:
    module add16 ( input[15:0] a, input[15:0] b, input cin, output[15:0] sum, output cout );
    Verilog刷题[hdlbits] :Module add,verilog,fpga开发,verilog,hdlbits
module top_module(
    input [31:0] a,
    input [31:0] b,
    output [31:0] sum
);
    //定义低16位加法器的输入与输出信号
    wire [15:0] add1_a;
    wire [15:0] add1_b;
    wire        cout1; //进位信号
    
   //定义高16位加法器的输入与输出信号
    wire [15:0] add2_a;
    wire [15:0] add2_b;
   	
    //对应进行赋值
    assign add1_a = a[15:0];
    assign add1_b = b[15:0];
    
    assign add2_a = a[31:16];
    assign add2_b = b[31:16];
    
    //低16位
    add16 add16_init_1(
        .a(add1_a),
        .b(add1_b),
        .cin(1'b0),
        .sum(sum[15:0]),
        .cout(cout1)
    );
    
    //高16位 
    add16 add16_init_2(
        .a(add2_a),
        .b(add2_b),
        .cin(cout1),
        .sum(sum[31:16])
    );
    
endmodule

上面的代码定义了 wire型变量使代码更加明了,但也可以使用下面的方法,只需定义一个进位信号即可。

module top_module(
    input [31:0] a,
    input [31:0] b,
    output [31:0] sum
);
  
    wire        cout1; //进位信号
    //低16位
    add16 add16_init_1(
        .a(a[15:0]),
        .b(b[15:0]),
        .cin(1'b0),
        .sum(sum[15:0]),
        .cout(cout1)
    );
    
    //高16位 
    add16 add16_init_2(
        .a(a[31:16]),
        .b(b[31:16]),
        .cin(cout1),
        .sum(sum[31:16])
    );
    
endmodule

到了这里,关于Verilog刷题[hdlbits] :Module add的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • HDLbits---Verilog Language---Procedures

    2024年02月13日
    浏览(54)
  • HDLBits-Verilog学习记录 | Verilog Language-Modules(1)

    practice:You may connect signals to the module by port name or port position. For extra practice, try both methods. 两种方法: 1、You may connect signals to the module by port name 注:mod_a的端口与top_module的输入输出端口顺序一致,按照位置从左到右适配 2、port position 注:这里直接将两者进行绑定 practice: Thi

    2024年02月11日
    浏览(37)
  • verilog学习 | HDLBits:在线学习答案

    HDLBits 在提供 Verilog 基础语法教程的同时,还能够在线仿真 Verilog 模块。 以下是各单元解法答案。希望可以帮助您了解 Verilog 的工作原理。 HDLBits 在提供 Verilog 基础语法教程的同时,还能够在线仿真 Verilog 模块。 ⚠️ 注意:顶层的模块名称和端口名称 top_module 不能更改,否

    2024年02月16日
    浏览(34)
  • hdlbits系列verilog解答(always块if语句)-31

    if 语句通常创建一个 2 对 1 多路复用器,如果条件为 true,则选择一个输入,如果条件为 false,则选择另一个输入。 always @(*) begin if (condition) begin out = x; end else begin out = y; end end 这等效于使用带有条件运算符的连续赋值: assign out = condition ? (x : y); 使用if语句不当时会产生不想

    2024年02月06日
    浏览(37)
  • HDLBits自学笔记3:Verilog language.Modules Hierarchy

    在顶层模块中实例化模块 mod_a ,其端口描述: module mod_a ( input in1, input in2, output out ); 在顶层模块中按信号位置实例化模块 mod_a ,其端口描述: module mod_a ( output, output, input, input, input, input ); 在顶层模块中按信号名实例化 mod_a ,其端口描述: module mod_a ( output out1, output out2,

    2024年02月12日
    浏览(39)
  • HDLBits_第1章_Verilog Language(已完结)

    目录 1. Verilog Language 1.1 Basics 1.1.1 Simple wire 1.1.2 Four wires 1.1.3 Inverter  1.1.4 AND gate 1.1.5 NOR gate 1.1.6 XNOR gate 1.1.7 Declaring wires 1.1.8 7458 chip 1.2 Vectors 1.2.1 Vectors 1.2.2 Vectors in more detail  1.2.3 Vector part select  1.2.4 Bitwise operators  1.2.5 Four-input gates 1.2.6 Vector concatenation operator 1.2.7 Vector reve

    2024年02月08日
    浏览(37)
  • 基于FPGA的QPSK调制系统verilog开发

    目录 一、理论基础 二、核心程序 三、测试结果         正交相移键控(Quadrature Phase Shift Keying,QPSK)是一种数字调制方式。它分为绝对相移和相对相移两种。由于绝对相移方式存在相位模糊问题,所以在实际中主要采用相对移相方式DQPSK。QPSK是一种四进制相位调制,具有良

    2024年02月01日
    浏览(47)
  • hdlbits系列verilog解答(8位宽移位寄存器)-24

    这项练习是module_shift移位寄存器的延伸。模块端口不是只有单个引脚,我们现在有以向量作为端口的模块,您将在其上附加线向量而不是普通线网数据。与 Verilog 中的其他位置一样,端口的向量长度不必与连接到它的导线匹配,但这会导致向量的零填充或截断。本练习不使用

    2024年02月08日
    浏览(39)
  • 基于Verilog 语言开发的FPGA密码锁工程

    基于Verilog 语言开发的FPGA密码锁工程。 通过矩阵键盘输入按键值。 输入12修改密码,13清除密码,可以修改原来默认的密码,修改时首先要输入当前密码进行验证,正确后才能更新当前密码,否则修改不成功。 修改结束后按键15,确认修改成功。 也直接使用默认密码作为最终

    2024年02月10日
    浏览(59)
  • 基于FPGA的FSK调制解调系统verilog开发

    目录 1.算法仿真效果 2.verilog核心程序 3.算法涉及理论知识概要 4.完整verilog VIVADO2019.2仿真结果如下:       频移键控是利用载波的频率变化来传递数字信息。数字频率调制是数据通信中使用较 早的一种通信方式,由于这种调制解调方式容易实现,抗噪声和抗衰减性能较强,

    2024年02月05日
    浏览(77)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包