Verilog specify 块语句

这篇具有很好参考价值的文章主要介绍了Verilog specify 块语句。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

路径延迟用关键字 specify 和 endspecify 描述,关键字之间组成 specify 块语句

specify 是模块中独立的一部分,不能出现在其他语句块(initial, always 等)中。

specify 块语句主要有以下功能:

  • 指定所有路径中引脚到引脚的延迟;
  • 定义 specparam 常量;
  • 在电路中设置时序检查。

并行连接

每条路径都有一个源引脚和目的引脚,将这些路径的延迟依次用 specify 语句描述出来,称为并行连接。并行连接用法格式如下:
(<source_io> => <destination_io>) = <delay_value> ;
一个带有路径延迟的 4 输入的与逻辑模块模型描述如下:

实例

module and4(
   output       out,
   input        a, b, c, d);

   specify
      (a => out) = 2.5 ;
      (b => out) = 2.5 ;
      (c => out) = 3.5 ;
      (d => out) = 3.5 ;
   endspecify

   wire         an1, an2 ;
   and          (an1, a, b);
   and          (an2, c, d);
   and          (out, an1, an2);
endmodule

可以用关键字 specparam 在 specify 块中定义延迟数值常量,然后赋值给路径延迟。specparam 定义的常量只能在 specify 块内部使用。

实例

   specify
      specparam ab_2_out = 2.5 ;
      specparam cd_2_out = 3.5 ;
     
      (a => out) = ab_2_out ;
      (b => out) = ab_2_out ;
      (c => out) = cd_2_out ;
      (d => out) = cd_2_out ;
   endspecify

并行连接中,源引脚和目的引脚是一一对应的。并行连接也支持多位宽信号间的路径延迟描述,但是位宽必须保持一致。

实例

module paral_conn(
    input [3:0]         d,
    output [3:0]        q);

   specify
      (d => q) = 3 ;
   endspecify

   assign q = d & 0101 ;
endmodule

其中,specify 块语句也可以展开描述,两种表达方式是等效的。

实例

   specify
      (d[0] => q[0]) = 3 ;
      (d[1] => q[1]) = 3 ;
      (d[2] => q[2]) = 3 ;
      (d[3] => q[3]) = 3 ;
   endspecify

全连接

在全连接中,源引脚中的每一位与目标引脚的每一位相连接。源引脚和目的引脚的连接是组合遍历的,且不要求位宽对应。全连接用法格式如下:
(<multiple_source_io> *> <multiple_destination_io>) = <delay_value> ;

例如 4 输入的与逻辑模块可以描述如下:

实例

module and4(
   output       out,
   input        a, b, c, d);

   specify
      (a,b *> out) = 2.5 ;
      (c,d *> out) = 3.5 ;
   endspecify

   wire         an1, an2 ;
   and          (an1, a, b);
   and          (an2, c, d);
   and          (out, an1, an2);
endmodule

边沿敏感路径

        边沿敏感路径用于输入到输出延迟的时序建模,并使用边缘标识符指明触发条件。如果没有指明的话,任何变化都会触发源引脚到目的引脚的延迟值的变化。

用法举例如下:

实例

    //在 clk 上升沿,从 clk 到 out 的路径上升延迟为 1,下降延迟为 2
    //从 in 到 out 的数据路径是同向的,即 out = in
    (posedge clk => (out +: in)) = (1,2);
   
    //在 clk 下降沿,从 clk 到 out 的路径上升延迟为 1,下降延迟为 2
    //从 in 到 out 的数据路径是反向的,即 out = ~in
    (negedge clk => (out -: in)) = (1,2);
   
    //clk 任意变化时,从 clk 到 out 的路径上升延迟为 1,下降延迟为 2
    //从 in 到 out 的数据路径是不可以预知的,同向、反向或不变
    (negedge clk => (out : in)) = (1,2);

条件路径

        Verilog 也允许模型中根据信号值的不同,有条件的给路径延迟进行不同的赋值。条件中的操作数可以是标量,也可以是向量,条件表达式也可以包含任意操作符。需要注意的是,应当只使用 if 语句将条件路径中所有的输入状态都完整的声明。没有声明的路径会使用分布延迟,分布延迟也没有声明的话,将使用零延迟如果路径延迟和分布延迟同时声明,将选择最大的延迟作为路径延迟。但是 specify 中的 if 语句不能使用 else 结构,可以使用 ifnone 描述条件缺省时的路径延迟。

实例

   specify
      if (a)    (a => out) = 2.5 ;
      if (~a)   (a => out) = 1.5 ;

      if (b & c)        (b => out) = 2.5 ;
      if (!(b & c))     (b => out) = 1.5 ;

      if ({c, d} == 2'b01)
                (c,d *> out) = 3.5 ;
      ifnone    (c,d *> out) = 3 ;
   endspecify

门延迟路径

        门延迟(上升延迟、下降延迟、关断延迟)的数值也可以通过路径延迟的方法来描述。可以定义的延迟路径个数为 1 个,2 个,3 个,6 个, 12 个,其他数量的延迟值都是错误的。
下面举例说明门延迟模型中路径延迟的表示方法。

实例

   //1 个参数: 上升、下降、关断延迟只使用一个延迟参数
   specify
      specparam t_delay = 1.5 ;
      (clk => q) = t_delay ;
   endspecify

   //2 个参数: 上升延迟(0->1, z->1, 0->z)= 1.5
   //         下降延迟(1->0, z->0, 1->z)= 2
   specify
      specparam t_rise = 1.5, t_fall = 2 ;
      (clk => q) = (t_rise, t_fall) ;
   endspecify
 
   //3 个参数: 上升延迟(0->1, z->1)= 1.5
   //         下降延迟(1->0, z->0)= 2
   //         关断延迟(1->z, 0->z)= 1.8
   specify
      specparam t_rise = 1.5, t_fall = 2, t_turnoff = 1.8 ;
      (clk => q) = (t_rise, t_fall, t_turnoff);
   endspecify

   //6 个参数: 分别对应0->1, 1->0, 0->z, z->1, 1->z, z->0
   specify
      specparam t_01 = 1.5, t_10 = 2,   t_0z = 1.8 ;
      specparam t_z1 = 2,   t_1z = 2.2, t_z0 = 2.1 ;
      (clk => q) = (t_01, t_10, t_0z, t_z1, t_1z, t_z0) ;
   endspecify

   //12 个参数: 分别对应0->1, 1->0, 0->z, z->1, 1->z, z->0
   //                 0->x, x->1, 1->x, x->0, x->z, z->x
   specify
      specparam t_01 = 1.5, t_10 = 2,   t_0z = 1.8 ;
      specparam t_z1 = 2,   t_1z = 2.2, t_z0 = 2.1 ;
      specparam t_0x = 1.1, t_x1 = 1.2, t_1x = 2.1 ;
      specparam t_x0 = 2,   t_xz = 2  , t_zx = 2.1 ;

      (clk => q) = (t_01, t_10, t_0z, t_z1, t_1z, t_z0,
                    t_0x, t_x1, t_1x, t_x0, t_xz, t_zx) ;
   endspecify

门路径延迟模型中,也可以指定最大值、最小值和典型值。

实例

   //上升、下降和关断延的延迟值:min: typical: max
   specify
      specparam t_rise    = 1:1.5:1.8;
      specparam t_fall    = 1:1.8:2 ;
      specparam t_turnoff = 1.1:1.2:1.3 ;
      (clk => q) = (t_rise, t_fall, t_turnoff);
   endspecify

X 传输延迟

如果没有指定 x 转换时间的延迟(门路径延迟中没有给出 12 个延迟参数),则规定:

  • 从 x 转换为已知状态的延迟时间为,可能需要的最大延迟时间;
  • 从已知状态转换为 x 的延迟时间为,可能需要的最小延迟时间。

例如,当门路径延迟中给出 6 个延迟参数时,则 x 传输延迟时间定义如下表所示:文章来源地址https://www.toymoban.com/news/detail-739258.html

x 转换 延迟值
0->x min(t_01, t_0z)
1->x min(t_10, t_1z)
z->x min(t_z1, t_z0)
x->0 max(t_10, t_z0)
x->1 max(t_01, t_z1)
x->z max(t_1z, t_0z)

到了这里,关于Verilog specify 块语句的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于Verilog 语言开发的FPGA密码锁工程

    基于Verilog 语言开发的FPGA密码锁工程。 通过矩阵键盘输入按键值。 输入12修改密码,13清除密码,可以修改原来默认的密码,修改时首先要输入当前密码进行验证,正确后才能更新当前密码,否则修改不成功。 修改结束后按键15,确认修改成功。 也直接使用默认密码作为最终

    2024年02月10日
    浏览(59)
  • 基于FPGA的FSK调制解调系统verilog开发

    目录 1.算法仿真效果 2.verilog核心程序 3.算法涉及理论知识概要 4.完整verilog VIVADO2019.2仿真结果如下:       频移键控是利用载波的频率变化来传递数字信息。数字频率调制是数据通信中使用较 早的一种通信方式,由于这种调制解调方式容易实现,抗噪声和抗衰减性能较强,

    2024年02月05日
    浏览(77)
  • FPGA开发] 使用Verilog实现一个简单的计数器

    计数器是数字电路中常见的元件之一,它能够按照一定的规律进行计数。在FPGA开发中,我们可以使用硬件描述语言Verilog来实现一个简单的计数器。本文将为您详细介绍如何使用Verilog编写一个基于FPGA的计数器,并提供相应的源代码。 首先,我们需要定义计数器的功能和规格

    2024年02月03日
    浏览(61)
  • 基于vivado+Verilog FPGA开发 — GT收发器

    代码规范:Verilog 代码规范_verilog代码编写规范-CSDN博客 开发流程:FPGA基础知识----第二章 FPGA 开发流程_fpga 一个项目的整个流程-CSDN博客   源码下载:GitHub - Redamancy785/FPGA-Learning-Record: 项目博客:https://blog.csdn.net/weixin_51460407 零、低速通信接口的缺陷 1、同步通信要求传输数据

    2024年04月17日
    浏览(64)
  • fpga开发基于verilog HDL的四人抢答器

    鱼弦:CSDN内容合伙人、CSDN新星导师、全栈领域创作新星创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen) 智能电子抢答器可容纳4组参赛者抢答,每组设一个抢答钮。 ③ 电路具有第一抢答信号的鉴别和锁存功能。

    2024年02月04日
    浏览(49)
  • 密码锁设计Verilog代码Quartus 睿智FPGA开发板

    名称:密码锁设计Verilog代码Quartus  睿智FPGA开发板(文末获取) 软件:Quartus 语言:Verilog 代码功能: 1、设计一个密码锁的控制电路,当输入正确代码时,输岀开锁信号用红灯亮、绿灯 熄灭表示关锁,用绿灯亮、红灯熄灭表示开锁 2、在锁的控制电路中储存一个可以修改的4位代

    2024年01月18日
    浏览(51)
  • 基于FPGA的7x7矩阵求逆verilog开发

    up目录 一、理论基础 二、核心程序 三、测试结果       要通过Verilog实现矩阵求逆,需要进行复杂的硬件设计,这是一个相当复杂的任务,特别是对于大型矩阵。矩阵求逆涉及到大量的浮点运算和存储操作,因此需要高度的硬件设计和优化。以下是一般步骤,可以帮助您开始

    2024年02月15日
    浏览(62)
  • 【Verilog实现8个输入1个输出的选择器】--FPGA开发

    【Verilog实现8个输入1个输出的选择器】–FPGA开发 在FPGA开发中,选择器是一种重要的电路,它可以将多个输入端口上的数据选择一个输出端口进行传输。通过Verilog语言实现选择器,我们可以灵活地根据实际需求来配置输入和输出端口,提高FPGA的功能和性能。 下面,我们将讨

    2024年02月07日
    浏览(44)
  • Quartus数字秒表verilog代码青创QC-FPGA开发板

    名称:Quartus数字秒表verilog代码青创QC-FPGA开发板(文末获取) 软件:Quartus 语言:Verilog 代码功能: 数字秒表设计 1、支持复位、启动、暂停 2、具有量程切换功能,可以切换显示小时、分钟或者秒、毫秒 3、数码管显示时间,精确到10毫秒 FPGA代码Verilog/VHDL代码资源下载:www.hd

    2024年02月03日
    浏览(41)
  • 基于FPGA的高速数据采集ATA接口Verilog开发与Matlab

    基于FPGA的高速数据采集ATA接口Verilog开发与Matlab 摘要: 本文介绍了基于FPGA的高速数据采集ATA接口的Verilog开发与Matlab的应用。通过使用Verilog语言进行FPGA的硬件设计,实现了ATA接口的数据采集功能。同时,结合Matlab进行数据处理和分析,实现了对采集的数据进行实时处理和显

    2024年02月07日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包