头歌机器学习---sklearn中的kNN算法

这篇具有很好参考价值的文章主要介绍了头歌机器学习---sklearn中的kNN算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

第1关 使用sklearn中的kNN算法进行分类

from sklearn.neighbors import KNeighborsClassifier

def classification(train_feature, train_label, test_feature):
    '''
    使用KNeighborsClassifier对test_feature进行分类
    :param train_feature: 训练集数据
    :param train_label: 训练集标签
    :param test_feature: 测试集数据
    :return: 测试集预测结果
    '''

    #********* Begin *********#
    clf = KNeighborsClassifier()
    clf.fit(train_feature, train_label)
    return clf.predict(test_feature)
    #********* End *********#

第2关 使用sklearn中的kNN算法进行回归文章来源地址https://www.toymoban.com/news/detail-739475.html

from sklearn.neighbors import KNeighborsRegressor

def regression(train_feature, train_label, test_feature):
    '''
    使用KNeighborsRegressor对test_feature进行分类
    :param train_feature: 训练集数据
    :param train_label: 训练集标签
    :param test_feature: 测试集数据
    :return: 测试集预测结果
    '''

    #********* Begin *********#
    clf=KNeighborsRegressor() 
    clf.fit(train_feature, train_label)               
    return clf.predict(test_feature)
    #********* End *********#

到了这里,关于头歌机器学习---sklearn中的kNN算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【机器学习笔记】7 KNN算法

    欧几里得度量(Euclidean Metric)(也称欧氏距离)是一个通常采用的距离定义,指在𝑚维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。 想象你在城市道路里,要从一个十字路口开车到

    2024年02月21日
    浏览(39)
  • 机器学习小结之KNN算法

    ​ KNN (K-Nearest Neighbor)算法是一种最简单,也是一个很实用的机器学习的算法,在《 机器学习实战 》这本书中属于第一个介绍的算法。它属于基于实例的 有监督学习 算法,本身不需要进行训练,不会得到一个概括数据特征的 模型 ,只需要选择合适的参数 K 就可以进行应用。

    2024年02月06日
    浏览(77)
  • 机器学习KNN最邻近分类算法

    KNN (K-Nearest Neighbor) 最邻近分类算法,其核心思想“近朱者赤,近墨者黑”,由你的邻居来推断你的类别。 图中绿色圆归为哪一类? 1、如果k=3,绿色圆归为红色三角形 2、如果k=5,绿色圆归为蓝色正方形 参考文章 knn算法实现原理:为判断未知样本数据的类别,以所有已知样

    2024年04月10日
    浏览(68)
  • 机器学习——K近邻(KNN)算法

    目录 一、knn算法概述 1.简单介绍 2.工作原理 3.knn算法中常用的距离指标 4.knn算法优势 5.knn算法一般流程 二、knn算法经典实例——海伦约会网站 三、关于天气和旅行适合度的例子 四、总结 K近邻算法(KNN)是一种用于分类和回归的统计方法。k-近邻算法采用测量不同特征值之

    2024年01月16日
    浏览(38)
  • 机器学习——kNN算法之红酒分类

    目录 StandardScaler的使用 KNeighborsClassifier的使用 代码实现 数据集介绍 数据集为一份红酒数据,总共有 178 个样本,每个样本有 13 个特征,这里不会为你提供红酒的标签,你需要自己根据这 13 个特征对红酒进行分类。部分数据如下图: StandardScaler的使用 由于数据中有些特征的

    2024年02月11日
    浏览(38)
  • 【机器学习实战】K- 近邻算法(KNN算法)

    K-近邻算法 ,又称为  KNN 算法 ,是数据挖掘技术中原理最简单的算法。 KNN  的工作原理:给定一个已知类别标签的数据训练集,输入没有标签的新数据后,在训练数据集中找到与新数据最临近的 K 个实例。如果这 K 个实例的多数属于某个类别,那么新数据就属于这个类别。

    2023年04月20日
    浏览(57)
  • 机器学习——K最近邻算法(KNN)

    机器学习——K最近邻算法(KNN) 在传统机器学习中,KNN算法是一种基于实例的学习算法,能解决分类和回归问题,而本文将介绍一下KNN即K最近邻算法。 K最近邻(KNN)算法是一种基于实例的学习算法,用于分类和回归问题。它的原理是 根据样本之间的距离来进行预测 。 核

    2024年02月09日
    浏览(42)
  • 【机器学习】KNN算法-鸢尾花种类预测

    K最近邻(K-Nearest Neighbors,KNN)算法是一种用于模式识别和分类的简单但强大的机器学习算法。它的工作原理非常直观:给定一个新数据点,KNN算法会查找离这个数据点最近的K个已知数据点,然后基于这K个最近邻数据点的类别来决定新数据点的类别。简而言之,KNN算法通过周

    2024年02月07日
    浏览(42)
  • 机器学习-KNN算法(鸢尾花分类实战)

    前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 K近邻(K Nearest Neighbors,KNN)算法是最简单的分类算法之一,也就是根据现有训练数据判断输入样本是属于哪一个类别。 “近朱者赤近墨者黑\\\",所谓的K近邻,也就

    2023年04月08日
    浏览(72)
  • 【数据挖掘】-KNN算法+sklearn代码实现(六)

    🤵‍♂️ 个人主页:@Lingxw_w的个人主页 ✍🏻作者简介:计算机科学与技术研究生在读 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+   目录 介绍算法的例子 KNN算法原理

    2024年02月07日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包