Matlab图像处理-均值滤波

这篇具有很好参考价值的文章主要介绍了Matlab图像处理-均值滤波。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

均值滤波

均值滤波所使用的运算是卷积。均值滤波用邻域内像素的平均值来代替中心像素的值,相当于低通滤波,有将图像模糊化的趋势,对椒盐噪声基本无能为力。

MATLAB中,可使用imfilter函数来实现线性空间滤波,该函数的语法如下:

J = imfilter(I,w,filtering_mode,boundary_options’size_options)

其中,I为输入图像, w为滤波模板, J为滤波后输出图像。filtering_mode对默认规定为' corr',对卷积规定为' conv'boundary_options处理边界填充问题,边界的大小由滤波器的尺寸确定。size_options ' same ''full'两个模式。关于imfilter函数的更详细的说明,可在MATLAB中输入help imfilter查看。

示例代码

I = imread('toyobjects.png');
I_1 = imnoise(I,'salt & pepper',0.3);        %对图像添加椒盐噪声
I_2 = imnoise(I,'gaussian',0.3);        %对图像添加椒盐噪声
w = [1 1 1 1 1;1 1 1 1 1;1 1 1 1 1;]/25                  %取5×5大小掩模
J = imfilter(I_1,w,'corr','replicate');          %对椒盐噪声图像进行
均值滤波处理
K = imfilter(I_2,w,'corr','replicate');          %对高斯噪声图像进行
均值滤波处理
subplot(2,2,1),imshow(I_1),title('(a)添加椒盐噪声图像');
subplot(2,2,2),imshow(I_1),title('(b)添加高斯噪声图像');
subplot(2,2,3),imshow(J),title('(c)均值滤波处理椒盐噪声');
subplot(2,2,4),imshow(K),title('(d)均值滤波处理高斯噪声'); 

效果图片

matlab均值滤波器,Matlab,matlab,图像处理,均值算法文章来源地址https://www.toymoban.com/news/detail-739479.html

到了这里,关于Matlab图像处理-均值滤波的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 图像处理中调用matlab自带均值滤波、高斯滤波和中值滤波函数的案例以及自编均值滤波的案例。

    @[TOC](利用matlab自带均值滤波器的代码,分别对一幅图像实现3*3,5*5,7*7,9*9的均值滤波,并对实验结果进行分析。) @[TOC](分别给干净图像添加高斯和椒盐噪声,然后进行均值滤波、高斯滤波和中值滤波,并对实现结果进行分析。) @[TOC](自编均值滤波器对一幅图像实现填充后,

    2024年02月11日
    浏览(41)
  • Matlab图像处理频域滤波实现——巴特沃斯低通、高通、带通带阻滤波器

    巴特沃斯滤波器是一种常用于图像处理的滤波器,它在频域中的传递函数具有更加平滑的过渡,相对于理想滤波器来说,巴特沃斯滤波器可以更好地控制截止频率和滤波器的阶数。下面是巴特沃斯滤波器的不同类型的原理简介: 1.原理 (1)巴特沃斯低通滤波(Butterworth Lowp

    2024年04月09日
    浏览(55)
  • 图像处理之理想低通滤波器、巴特沃斯低通滤波器和高斯低通滤波器的matlab实现去噪

    一、前言 在一幅图像中, 低频部分对应图像变化缓慢的部分即图像大致外观和轮廓。高频部分对应图像变换剧烈的部分即图像细节(注意图像的噪声属于高频部分) 。 低通滤波器的功能是让低频率通过而滤掉或衰减高频,其作用是过滤掉包含在高频中的噪声。即 低通滤波的效

    2023年04月09日
    浏览(51)
  • 【C++】【图像处理】均值滤波 and 高斯滤波 and 中值滤波 (低通滤波器)and Sobel算子边缘提取算法解析(以.raw格式的图像为基础进行图像处理、gray levels:256)

     中值滤波: 中值滤波中的MidValueFind函数的实现就是冒泡排序,最后去中间值返回:  Soble算子边缘提取:     总结: 1、均值、高斯滤波和Sobel算子边缘提取的核心,创建卷积核并确定各个点上的权重,然后将边缘灰度级归零(是否边缘归零按业务需求决定),提取非边缘像

    2024年02月05日
    浏览(56)
  • 【图像去噪的滤波器】非局部均值滤波器的实现,用于鲁棒的图像去噪研究(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 Buades等

    2024年02月11日
    浏览(44)
  • 数字图像处理---低高通滤波实验(MATLAB实现)

    1. 了解图像傅里叶变换的意义和手段; 2. 熟悉理想低通滤波器、巴特沃斯低通滤波器、高斯低通滤波器的基本原理和性质; 3. 熟悉理想高通滤波器、巴特沃斯高通滤波器、高斯高通滤波器的基本原理和性质; 4. 掌握MATLAB编程实现数字图像的低高通滤波器的变换,并分析各参

    2024年02月05日
    浏览(41)
  • matlab实现图像频域处理(低通滤波、高通滤波、同态滤波)

            频域滤波是一种图像处理技术,可以通过在频域中增加或减弱某些频率分量,从而实现图像去噪、锐化、平滑等功能。常见的频域滤波包括频域低通滤波、频域高通滤波和频域同态滤波。            在使用这些滤波器进行频域处理时,通常需要选择合适的参

    2024年02月12日
    浏览(39)
  • 图像处理之高通滤波器与低通滤波器

    目录 高频与低频区分: 高通滤波器: 1.傅里叶变换: 低通滤波器: 总结:         在了解图像滤波器之前,先谈一下如何区分图像的高频信息和低频信息,所谓高频就是该像素点与周围像素差异较大,常见于一副图像的边缘细节和噪声等;而低频就是该像素点与周围像素

    2023年04月09日
    浏览(49)
  • 图像处理:均值滤波算法

    目录 前言 概念介绍 基本原理 Opencv实现均值滤波 Python手写实现均值滤波 参考文章 在此之前,我曾在此篇中推导过图像处理:推导五种滤波算法(均值、中值、高斯、双边、引导)。这在此基础上,我想更深入地研究和推导这些算法,以便为将来处理图像的项目打下基础。

    2023年04月23日
    浏览(79)
  • 数字图像处理(七)均值滤波

    题目:使用均值滤波器对图像进行滤波。 采用国际标准测试图像Lena。 3*3的均值滤波器定义如下: c++代码: 结果展示: 均值滤波器的特点: 计算均值会将图像中的边缘信息和特征信息模糊掉,丢失很多特征,使得景物的清晰度降低,画面变得模糊。对于高斯噪声,当滤波器

    2024年02月11日
    浏览(91)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包