带你认识一下多模态对比语言图像预训练CLIP

这篇具有很好参考价值的文章主要介绍了带你认识一下多模态对比语言图像预训练CLIP。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文分享自华为云社区《多模态对比语言图像预训练CLIP:打破语言与视觉的界限》,作者:汀丶。

一种基于多模态(图像、文本)对比训练的神经网络。它可以在给定图像的情况下,使用自然语言来预测最相关的文本片段,而无需为特定任务进行优化。CLIP的设计类似于GPT-2和GPT-3,具备出色的零射击能力,可以应用于多种多模态任务。

  • 多模态对比语言图像预训练(CLIP)是一种神经网络模型,它通过多模态对比训练来学习图像和文本之间的关联。与传统的单模态预训练模型不同,CLIP能够同时处理图像和文本,从而更好地理解它们之间的语义关系。
  • CLIP的设计类似于GPT-2和GPT-3,是一种自回归语言模型。它通过对比学习来学习图像和文本之间的映射关系。在训练过程中,CLIP会接收一张图像和一个与之相关的文本片段,并学习如何将这两个模态的信息进行关联。通过这种方式,CLIP可以学会将图像与相应的文本片段进行匹配,从而在给定图像的情况下,使用自然语言来预测最相关的文本片段。
  • 由于CLIP采用了对比学习的方法,它可以在无需为特定任务进行优化的前提下,表现出色地完成多种多模态任务。这使得CLIP成为了一种通用的多模态预训练模型,可以广泛应用于图像标注、视觉问答、图像生成等领域。

CLIP(对比语言图像预训练)是一种基于多种(图像、文本)对进行训练的神经网络。在给定图像的情况下,它可以用自然语言来预测最相关的文本片段,而无需直接针对任务进行优化,类似于GPT-2和gpt - 3的零射击能力。我们发现CLIP在不使用任何原始的1.28M标记示例的情况下,在ImageNet“零射击”上匹配原始ResNet50的性能,克服了计算机视觉中的几个主要挑战。

1.安装

ftfy

regex

tqdm

torch

torchvision
$ conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0

$ pip install ftfy regex tqdm

$ pip install git+https://github.com/openai/CLIP.git

Replace cudatoolkit=11.0 above with the appropriate CUDA version on your machine or cpuonly when installing on a machine without a GPU.

import torch

import clip

from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"

model, preprocess = clip.load("ViT-B/32", device=device)

image = preprocess(Image.open("CLIP.png")).unsqueeze(0).to(device)

text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device)

with torch.no_grad():

image_features = model.encode_image(image)

text_features = model.encode_text(text)



logits_per_image, logits_per_text = model(image, text)

probs = logits_per_image.softmax(dim=-1).cpu().numpy()

print("Label probs:", probs) # prints: [[0.9927937 0.00421068 0.00299572]]
  • API

The CLIP module clip provides the following methods:

  • clip.available_models()

Returns the names of the available CLIP models.

  • clip.load(name, device=..., jit=False)

返回模型和模型所需的TorchVision转换,由’ clip.available_models() ‘返回的模型名指定。它将根据需要下载模型。’ name '参数也可以是本地检查点的路径。

可以选择性地指定运行模型的设备,默认是使用第一个CUDA设备(如果有的话),否则使用CPU。当’ jit ‘为’ False '时,将加载模型的非jit版本。

  • clip.tokenize(text: Union[str, List[str]], context_length=77)

返回一个LongTensor,其中包含给定文本输入的标记化序列。这可以用作模型的输入

’ clip.load() '返回的模型支持以下方法:

  • model.encode_image(image: Tensor)

给定一批图像,返回由CLIP模型的视觉部分编码的图像特征。

  • model.encode_text(text: Tensor)

给定一批文本tokens,返回由CLIP模型的语言部分编码的文本特征。

  • model(image: Tensor, text: Tensor)

给定一批图像和一批文本标记,返回两个张量,包含对应于每个图像和文本输入的logit分数。其值是对应图像和文本特征之间的相似度的余弦值,乘以100。

2.案例介绍

2.1 零样本能力

下面的代码使用CLIP执行零样本预测,如本文附录B所示。本例从CIFAR-100数据集获取图像,并在数据集的100个文本标签中预测最可能的标签。

import os

import clip

import torch

from torchvision.datasets import CIFAR100

#Load the model

device = "cuda" if torch.cuda.is_available() else "cpu"

model, preprocess = clip.load('ViT-B/32', device)

#Download the dataset

cifar100 = CIFAR100(root=os.path.expanduser("~/.cache"), download=True, train=False)

#Prepare the inputs

image, class_id = cifar100[3637]

image_input = preprocess(image).unsqueeze(0).to(device)

text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in cifar100.classes]).to(device)

#Calculate features

with torch.no_grad():

image_features = model.encode_image(image_input)

text_features = model.encode_text(text_inputs)

#Pick the top 5 most similar labels for the image

image_features /= image_features.norm(dim=-1, keepdim=True)

text_features /= text_features.norm(dim=-1, keepdim=True)

similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1)

values, indices = similarity[0].topk(5)

#Print the result

print("\nTop predictions:\n")

for value, index in zip(values, indices):

print(f"{cifar100.classes[index]:>16s}: {100 * value.item():.2f}%")

输出将如下所示(具体数字可能因计算设备的不同而略有不同):

Top predictions:

snake: 65.31%

turtle: 12.29%

sweet_pepper: 3.83%

lizard: 1.88%

crocodile: 1.75%

Note that this example uses the encode_image() and encode_text() methods that return the encoded features of given inputs.

2.2 Linear-probe 评估

The example below uses scikit-learn to perform logistic regression on image features.

import os

import clip

import torch

import numpy as np

from sklearn.linear_model import LogisticRegression

from torch.utils.data import DataLoader

from torchvision.datasets import CIFAR100

from tqdm import tqdm

#Load the model

device = "cuda" if torch.cuda.is_available() else "cpu"

model, preprocess = clip.load('ViT-B/32', device)

#Load the dataset

root = os.path.expanduser("~/.cache")

train = CIFAR100(root, download=True, train=True, transform=preprocess)

test = CIFAR100(root, download=True, train=False, transform=preprocess)

def get_features(dataset):

all_features = []

all_labels = []



with torch.no_grad():

for images, labels in tqdm(DataLoader(dataset, batch_size=100)):

features = model.encode_image(images.to(device))

all_features.append(features)

all_labels.append(labels)

return torch.cat(all_features).cpu().numpy(), torch.cat(all_labels).cpu().numpy()

#Calculate the image features

train_features, train_labels = get_features(train)

test_features, test_labels = get_features(test)

#Perform logistic regression

classifier = LogisticRegression(random_state=0, C=0.316, max_iter=1000, verbose=1)

classifier.fit(train_features, train_labels)

#Evaluate using the logistic regression classifier

predictions = classifier.predict(test_features)

accuracy = np.mean((test_labels == predictions).astype(float)) * 100.

print(f"Accuracy = {accuracy:.3f}")

Note that the C value should be determined via a hyperparameter sweep using a validation split.

3.更多资料参考

  • OpenCLIP: includes larger and independently trained CLIP models up to ViT-G/14
  • Hugging Face implementation of CLIP: for easier integration with the HF ecosystem

 文章来源地址https://www.toymoban.com/news/detail-739490.html

点击关注,第一时间了解华为云新鲜技术~

 

到了这里,关于带你认识一下多模态对比语言图像预训练CLIP的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • AI绘画中CLIP文本-图像预训练模型

    OpenAI 在 2021 年提出了 CLIP(Contrastive Language–Image Pretraining)算法,这是一个先进的机器学习模型,旨在理解和解释图像和文本之间的关系。CLIP 的核心思想是通过大规模的图像和文本对进行训练,学习图像内容与自然语言描述之间的对应关系。这种方法使得模型能够在没有特

    2024年02月03日
    浏览(41)
  • 【OpenAI】DALL·E 2,让我来带你认识一下这位来自AI界的艺术家

    个人主页:【😊个人主页】 DALL-E 2 是一种基于语言的人工智能图像生成器,可以根据文本提示创建高质量的图像和艺术作品。它使用CLIP、先验和 unCLIP 模型来生成图像,其质量取决于文本提示的具体性。这也是我今天要介绍的主角 DALL-E 2是一款人工智能图像生成器,它可以

    2024年02月06日
    浏览(77)
  • DALL·E 2 解读 | 结合预训练CLIP和扩散模型实现文本-图像生成

      论文标题: 《Hierarchical Text-Conditional Image Generation with CLIP Latents》 作者/单位:Aditya Ramesh et al. / Open AI 论文链接: http://arxiv.org/abs/2204.06125 论文中文对照版:论文笔记:DALL-E2:Hierarchical Text-ConditionalImage Generation with CLIP Latents详解_nocol.的博客-CSDN博客 代码链接: 非官方实现 h

    2024年02月11日
    浏览(42)
  • 图像融合论文阅读:CoCoNet: 基于多层特征集成的耦合对比学习网络多模态图像融合

    @article{liu2023coconet, title={Coconet: Coupled contrastive learning network with multi-level feature ensemble for multi-modality image fusion}, author={Liu, Jinyuan and Lin, Runjia and Wu, Guanyao and Liu, Risheng and Luo, Zhongxuan and Fan, Xin}, journal={International Journal of Computer Vision}, pages={1–28}, year={2023}, publisher={Springer} } 论文级

    2024年02月04日
    浏览(52)
  • 简单对比一下 C 与 Go 两种语言

    以下内容为本人的学习笔记,如需要转载,请声明原文链接 微信公众号「ENG八戒」https://mp.weixin.qq.com/s/U6jIT837x5Yxe6Ev1aMDsA 使用一个简单的计数程序将古老的 C 语言与现代 Go 进行比较。 Go 是一种现代编程语言,追溯其历史大部分源自编程语言 C。所以,任何熟悉 C 语言的开发者

    2024年02月11日
    浏览(39)
  • Microsoft 图像BERT,基于大规模图文数据的跨模态预训练

    视觉语言任务是当今自然语言处理(NLP)和计算机视觉领域的热门话题。大多数现有方法都基于预训练模型,这些模型使用后期融合方法融合下游任务的多模态输入。然而,这种方法通常需要在训练期间进行特定的数据注释,并且对于许多多模态任务来说,满足这一要求仍然

    2024年02月12日
    浏览(38)
  • Python从0到1丨带你认识图像平滑的三种线性滤波

    摘要: 常用于消除噪声的图像平滑方法包括三种线性滤波(均值滤波、方框滤波、高斯滤波)和两种非线性滤波(中值滤波、双边滤波),本文将详细讲解三种线性滤波方法。 本文分享自华为云社区《[Python从零到壹] 五十五.图像增强及运算篇之图像平滑(均值滤波、方框滤

    2024年02月06日
    浏览(90)
  • 遥感图像多模态检索AMFMN(支持关键词、句子对图像的检索)论文阅读、环境搭建、模型测试、模型训练

    1、摘要背景 遥感跨模态文本图像检索以其灵活的输入和高效的查询等优点受到了广泛的关注。然而, 传统的方法忽略了遥感图像多尺度和目标冗余的特点,导致检索精度下降 。为了解决遥感多模态检索任务中的多尺度稀缺性和目标冗余问题,提出了一种新的 非对称多模态

    2024年03月17日
    浏览(57)
  • CLIP:一种基于视觉和语言相互关联的图像分类模型

    ❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈 (封面图由文心一格生成) 近年来,计算机视觉领域的发展非常迅速,其中

    2024年02月12日
    浏览(40)
  • 大语言模型底层架构丨带你认识Transformer

    本文分享自华为云社区《大语言模型底层架构你了解多少?大语言模型底层架构之一Transfomer的介绍和python代码实现》,作者: 码上开花_Lancer 。 语言模型目标是建模自然语言的概率分布,在自然语言处理研究中具有重要的作用,是自然语言处理基础任务之一。大量的研究从

    2024年02月05日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包