增加并行度后,发现Flink窗口不会计算的问题。

这篇具有很好参考价值的文章主要介绍了增加并行度后,发现Flink窗口不会计算的问题。。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

窗口没有关闭计算的问题,一直困扰了很久,经过多次验证,确定了问题的根源。


一、现象

Flink使用了window,同时使用了watermark ,并且还设置了较高的并行度。生产是设置了300的并行度,并且接入了几十个topic ,这个地方划重点,后面会提到。结果就是,窗口没有关闭进行计算。于是我查阅的相关文档,得到的答案是因为配置的源并行度大于topic的分区数而导致。这个答案只能说很接近,而且我最开始也觉得很有道理。
解释一下watermark + window的原理

增加并行度后,发现Flink窗口不会计算的问题。,flink,大数据
可以看到前面三个窗口里面都有数据,窗口触发计算的其中一个必要条件是最新的数据没过最低的水位线,就进行计算,认为不会再有乱序的数据进来了。但是从图中我们可以看到其中一个窗口一个数据都没有,就会导致拿不到所有窗口的最低水位线。因此也就无法触发计算。
为了验证这一法则
我在测试环境配置了一个并行度为10的程序,topic只有一个分区,启动任务的时候,我信誓旦旦地保证这不可能关闭窗口进行计算,然而,现实狠狠打了我一巴掌,窗口结果算出来了。虽然只是三言两语,实际上我做了很多尝试,只是其他的实验不重要,都是证明我是错的

于是通过比较的方法,想到和生产的情况不同就在于,生产消费了几十个topic,而我的测试只有一个topic,于是我再次坚信,问题一定就在这了。

我直接在idea进行测试
增加并行度后,发现Flink窗口不会计算的问题。,flink,大数据

我配置了两个topic,并且在一开始只往第一个topic中写数据,而第二个topic不写数据

很好,跑了一整个中午,一次窗口聚合计算都没有。

此时进行最后一步验证,就是往第二个topic写数据。

我在这个时间往第二个topic发了数据

collectTime":1697693856606

增加并行度后,发现Flink窗口不会计算的问题。,flink,大数据
为了让大家看清楚现象,我把日志和截图都给出来

2023-10-19 13:37:32.699 [Legacy Source Thread - Source: Custom Source -> Flat Map -> (Flat Map -> Flat Map -> Sink: Unnamed, Timestamps/Watermarks -> (Flat Map, Flat Map, Flat Map)) (10/16)#0] INFO  c.a.c.d.risk.domain.function.IndicatrixMapFunction - 【通过】滑动窗口前置数据处理
2023-10-19 13:37:32.805 [Window(TumblingEventTimeWindows(60000), EventTimeTrigger, CountAverageFunction, LogResultWindowFunction) (13/16)#0] INFO  com.ai.cass.dc.risk.re.idxSend.IdxSend - 聚合时:存储指标结果,calcTypeCode:FrequencyOccurStttc key:ff83d41c-335f-405d-88e7-f5285aecdcf5a1123 Value:8
2023-10-19 13:37:32.805 [Window(TumblingEventTimeWindows(60000), EventTimeTrigger, CountAverageFunction, LogResultWindowFunction) (13/16)#0] INFO  com.ai.cass.dc.risk.re.idxSend.IdxSend - 聚合时:存储指标结果,calcTypeCode:FrequencyOccurStttc key:ff83d41c-335f-405d-88e7-f5285aecdcf5a1123 Value:27
2023-10-19 13:37:32.805 [Window(TumblingEventTimeWindows(60000), EventTimeTrigger, CountAverageFunction, LogResultWindowFunction) (13/16)#0] INFO  com.ai.cass.dc.risk.re.idxSend.IdxSend - 聚合时:存储指标结果,calcTypeCode:FrequencyOccurStttc key:ff83d41c-335f-405d-88e7-f5285aecdcf5a1123 Value:28
2023-10-19 13:37:32.805 [Window(TumblingEventTimeWindows(60000), EventTimeTrigger, CountAverageFunction, LogResultWindowFunction) (13/16)#0] INFO  com.ai.cass.dc.risk.re.idxSend.IdxSend - 聚合时:存储指标结果,calcTypeCode:FrequencyOccurStttc key:ff83d41c-335f-405d-88e7-f5285aecdcf5a1123 Value:17
2023-10-19 13:37:32.805 [Window(TumblingEventTimeWindows(60000), EventTimeTrigger, CountAverageFunction, LogResultWindowFunction) (13/16)#0] INFO  com.ai.cass.dc.risk.re.idxSend.IdxSend - 聚合时:存储指标结果,calcTypeCode:FrequencyOccurStttc key:ff83d41c-335f-405d-88e7-f5285aecdcf5a1123 Value:20

增加并行度后,发现Flink窗口不会计算的问题。,flink,大数据

证明就是在这个时间节点上,窗口计算处理结果

二、结论

因此我就可以大胆地推断,是因为多个topic进行了数据消费,其中有个topic数据会进入窗口进行计算,但有的窗口又永远不会有数据进入计算,这就造成对应的窗口永远没有最低的watermark以致于窗口无法关闭并计算。

三、解决

既然问题找到了,那解决办法就随之而生文章来源地址https://www.toymoban.com/news/detail-739641.html

  • 1、如果可以不使用水印,直接关闭水印即可,只要消费的数据不会积压,并且要求没那么高的话,这个方法最简单
  • 2、减小并行度到能够使得每个窗口都有数据,减小并行度会让不同topic用同一个窗口,至于这个数量,那还得研究研究了
  • 3、把需要到窗口和不到窗口计算的数据进行分流
  • 4、也可以把源与后面算子之间采用rebalance的方式传递,这样就能够轮询的方式往下传递,使得每个window都会有数据,这里有一点一定要注意,rebalance必须放在watermark之前才可以。

到了这里,关于增加并行度后,发现Flink窗口不会计算的问题。的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分析Flink,源和算子并行度不一致时,运行一段时间后,看似不再继续消费的问题,提供解决思路。

    之前有分析过一次类似问题,最终结论是在keyby之后,其中有一个key数量特别庞大,导致对应的subtask压力过大,进而使得整个job不再继续运作。在这个问题解决之后,后续又再次出现了积压的情况,针对这个问题进行排查分析。 通过以下这张图,可以看到当前它是没有数据积

    2024年02月12日
    浏览(44)
  • GPU并行效率问题——通过MPS提升GPU计算收益

    使用V100_32G型号的GPU运行计算程序时,发现程序每5秒能够完成一次任务,耗费显存6G。 鉴于V100 GPU拥有32G的显存,还有很多空闲,决定同时运行多个计算程序,来提升GPU计算收益。 然而,这一切都是想当然的。运行多个计算程序时,每个计算程序的处理耗时大大增加。例如,

    2024年02月16日
    浏览(40)
  • 如何解决大规模并行计算中的线性代数问题

    作者:禅与计算机程序设计艺术 对大型矩阵运算而言,由于矩阵的元素之间的关系非常复杂,因此当运算过程中涉及到矩阵乘法、行列转置等运算时,通常采用并行化的方法进行加速处理。目前,主要的并行化技术包括基于硬件的多核CPU并行化技术、分布式集群并行化技术、

    2024年02月14日
    浏览(43)
  • 8 分钟看完这 7000+ 字,Flink 时间窗口和时间语义这对好朋友你一定搞得懂!外送窗口计算和水印一并搞懂!!!

    目录 一、时间语义 时间窗口 1. 前摘: 1.1 Flink的时间和窗口 1.2 什么是时间窗口和时间语义呢? 2. 时间窗口 2.1 举个例子: 2.2 3个实时数据计算场景 3. 时间语义 二、Flink上进行窗口计算: 1. 一个Flink窗口应用的大致骨架结构 2. Flink窗口的骨架结构中有两个必须的两个操作:

    2024年01月23日
    浏览(39)
  • Flink:并行度介绍和设置并行度

    一个Flink程序由多个Operator组成(source、transformation和 sink)。 一个Operator由多个并行的Task(线程)来执行, 一个Operator的并行Task(线程)数目就被称为该Operator(任务)的并行度(Parallel) 1.Operator Level(算子级别)(可以使用) 一个算子、数据源和sink的并行度可以通过调用 setParallelism()方法

    2024年02月16日
    浏览(36)
  • 在WPF窗口中增加水印效果

    ** ** 以Canvas作为水印显示载体,在Canvas中创建若干个TextBlock控件用来显示水印文案,如下图所示 然后以每一个TextBlock的左上角为中心旋转-30°,最终效果会是如图红线所示: 为了达到第一行旋转后刚好与窗口上边沿齐平,需要计算第一行其实位置的Top坐标,由于旋转角度为

    2024年02月04日
    浏览(37)
  • 【Flink精讲】Flink性能调优:CPU核数与并行度

    提交任务命令: bin/flink run -t yarn-per-job -d -p 5 指定并行度 -Dyarn.application.queue=test 指定 yarn 队列 -Djobmanager.memory.process.size=2048mb JM2~4G 足够 -Dtaskmanager.memory.process.size=4096mb 单个 TM2~8G 足够 -Dtaskmanager.numberOfTaskSlots=2 与容器核数 1core: 1slot 或 2core: 1slot -c com.atguigu.flin

    2024年04月11日
    浏览(46)
  • flink算子的并行度设置方法

    #flink算子的并行度设置方法 并行度(Parallelism)是flink中一个非常重要的概念,它主要是指一个算子可以被分的子任务数,通常越高就意味着算子计算速度越快。 如上图所示,map()算子的并行度为2,window()算子的并行度也为2,也可以说整个数据流的并行度就是2。并行度的设置

    2024年03月17日
    浏览(51)
  • Flink学习笔记(七)并行度详解

    一个Flink程序由多个任务(Source、Transformation和Sink)组成。一个任务由多个并行实例(线程)来执行,一个任务的并行实例(线程)数目被称为该任务的并行度。 Flink是一个分布式流处理框架,它基于TaskManager和Slot来实现任务的执行。TaskManager是Flink中负责运行任务的工作进程

    2024年02月09日
    浏览(41)
  • 十八、Flink自定义多并行Source

    1、概述 1)作用 自定义多并行的Source,即Source的并行度可以是1到多个。 2)实现 1.继承RichParallelSourceFunction,重写run()方法。 2、代码实现

    2024年02月08日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包