一、介绍
盒式滤波、均值滤波、高斯滤波、中值滤波、双边滤波、导向滤波。
boxFilter()
blur()
GaussianBlur()
medianBlur()
bilateralFilter()
1、双边滤波----非线性滤波器,保持边缘、降噪平滑。
采用加权平均方法,利用周边像素亮度值的加权平均代表某个像素的强度。
双边滤波的权重不仅考虑了像素的欧式距离,还考虑了像素范围中的辐射差异。
双边滤波的核函数是空间域核与像素范围域核的综合结果:
在图像的平坦区域,像素值变化很小,空间域权重起主要作用,相当于高斯模糊;
在图像的边缘区域,像素值变化很大,像素范围域权重变大,从而保持了边缘信息。
2、导向滤波----显示地利用guidance image计算输出图像。
导向滤波比起双边滤波来说在边界附近效果好,并且具有O(N)的线性时间速度优势。
导向滤波可以保持梯度,而双边滤波会有梯度翻转的现象。
二、代码
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
using namespace std;
using namespace cv;
#define WINDOWNAME "【滤波处理结果窗口】"
//---------------【全局变量声明部分】-------------------------
Mat g_srcIamge, g_dstImage1, g_dstImage2, g_dstImage3, g_dstImage4, g_dstImage5, g_dstImage6;
int g_nBoxFilterValue = 1; //盒式滤波内核值
int g_nMeanBlurValue = 1; //均值滤波内核值
int g_nGaussianBlurValue = 1; //高斯滤波内核值
int g_nMedianBlurValue = 1; //中值滤波内核值
int g_nBilateralFilterValue = 1; //双边滤波内核值
int g_nGuidedFilterValue = 1; //导向滤波内核值
const int g_nMaxVal = 20; //预设滑动条最大值
//--------------【全局函数声明部分】-------------------------
static void on_BoxFilter(int, void*); //盒式滤波器
static void on_MeanBlur(int, void*); //均值滤波器
static void on_GaussianBlur(int, void*); //高斯滤波器
static void on_MedianBlur(int, void*); //中值滤波器
static void on_BilateralFilter(int, void*); //双边滤波器
static void on_GuidedFilter(int, void*); //导向滤波器
void guidedFilter(Mat& srcMat, Mat& guidedMat, Mat& dstImage, int radius, double eps); //导向滤波器
//----------------------------【主函数】---------------------------
int main()
{
//------------【1】读取源图像并检查图像是否读取成功------------
g_srcIamge = imread("D:\\opencv4_1_2\\opencv\\sources\\samples\\data\\lena.jpg");
if (!g_srcIamge.data)
{
cout << "读取图片错误,请重新输入正确路径!\n";
system("pause");
return -1;
}
namedWindow("【源图像】", 1); //创建窗口
imshow("【源图像】", g_srcIamge); //显示窗口
//------------【2】在WINDOWNAME窗口上分别创建滤波6个滑动条------------
namedWindow(WINDOWNAME); //创建窗口
createTrackbar("方框滤波", WINDOWNAME, &g_nBoxFilterValue, g_nMaxVal, on_BoxFilter); //创建方框滤波轨迹条
on_BoxFilter(g_nBoxFilterValue, 0);
createTrackbar("均值滤波", WINDOWNAME, &g_nMeanBlurValue, g_nMaxVal, on_MeanBlur); //创建均值滤波轨迹条
on_MeanBlur(g_nMeanBlurValue, 0);
createTrackbar("高斯滤波", WINDOWNAME, &g_nGaussianBlurValue, g_nMaxVal, on_GaussianBlur); //创建高斯滤波轨迹条
on_GaussianBlur(g_nGaussianBlurValue, 0);
createTrackbar("中值滤波", WINDOWNAME, &g_nMedianBlurValue, g_nMaxVal, on_MedianBlur); //创建中值滤波轨迹条
on_MedianBlur(g_nMedianBlurValue, 0);
createTrackbar("双边滤波", WINDOWNAME, &g_nBilateralFilterValue, g_nMaxVal, on_BilateralFilter); //创建双边滤波轨迹条
on_BilateralFilter(g_nBilateralFilterValue, 0);
createTrackbar("导向滤波", WINDOWNAME, &g_nGuidedFilterValue, g_nMaxVal, on_GuidedFilter); //创建导向滤波轨迹条
on_GuidedFilter(g_nGuidedFilterValue, 0);
//------------【3】退出程序------------
cout << "\t按下'q'键,退出程序~!\n" << endl;
while (char(waitKey(1)) != 'q') {}
return 0;
}
//----------------------【on_BoxFilter()函数】------------------------
static void on_BoxFilter(int, void*)
{
boxFilter(g_srcIamge, g_dstImage1, -1, Size(g_nBoxFilterValue * 2 + 1, g_nBoxFilterValue * 2 + 1));
cout << "\n当前为【盒式滤波】处理效果,其内核大小为:" << g_nBoxFilterValue * 2 + 1 << endl;
imshow(WINDOWNAME, g_dstImage1);
}
//----------------------【on_MeanBlur()函数】------------------------
static void on_MeanBlur(int, void*)
{
blur(g_srcIamge, g_dstImage2, Size(g_nMeanBlurValue * 2 + 1, g_nMeanBlurValue * 2 + 1), Point(-1, -1));
cout << "\n当前为【均值滤波】处理效果,其内核大小为:" << g_nMeanBlurValue * 2 + 1 << endl;
imshow(WINDOWNAME, g_dstImage2);
}
//----------------------【on_GaussianBlur()函数】------------------------
static void on_GaussianBlur(int, void*)
{
GaussianBlur(g_srcIamge, g_dstImage3, Size(g_nGaussianBlurValue * 2 + 1, g_nGaussianBlurValue * 2 + 1), 0, 0);
cout << "\n当前为【高斯滤波】处理效果,其内核大小为:" << g_nGaussianBlurValue * 2 + 1 << endl;
imshow(WINDOWNAME, g_dstImage3);
}
//----------------------【on_MedianBlur()函数】------------------------
static void on_MedianBlur(int, void*)
{
medianBlur(g_srcIamge, g_dstImage4, g_nMedianBlurValue * 2 + 1);
cout << "\n当前为【中值滤波】处理效果,其内核大小为:" << g_nMedianBlurValue * 2 + 1 << endl;
imshow(WINDOWNAME, g_dstImage4);
}
//----------------------【on_BilateralFilter()函数】------------------------
static void on_BilateralFilter(int, void*)
{
bilateralFilter(g_srcIamge, g_dstImage5, g_nBilateralFilterValue, g_nBilateralFilterValue * 2, g_nBilateralFilterValue / 2);
cout << "\n当前为【双边滤波】处理效果,其内核大小为:" << g_nBilateralFilterValue << endl;
imshow(WINDOWNAME, g_dstImage5);
}
//----------------------【on_GuidedFilter()函数】------------------------
static void on_GuidedFilter(int, void*)
{
vector<Mat> vSrcImage, vResultImage;
//【1】对源图像进行通道分离,并对每个分通道进行导向滤波操作
split(g_srcIamge, vSrcImage);
for (int i = 0; i < 3; i++)
{
Mat tempImage;
vSrcImage[i].convertTo(tempImage, CV_64FC1, 1.0 / 255.0); //将分通道转换成浮点型数据
Mat cloneImage = tempImage.clone(); //将tempImage复制一份到cloneImage
Mat resultImage;
guidedFilter(tempImage, cloneImage, resultImage, g_nGuidedFilterValue * 2 + 1, 0.01); //对分通道分别进行导向滤波
vResultImage.push_back(resultImage); //将分通道导向滤波后的结果存放到vResultImage中
}
//【2】将分通道导向滤波后结果合并
merge(vResultImage, g_dstImage6);
cout << "\n当前处理为【导向滤波】,其内核大小为:" << g_nGuidedFilterValue * 2 + 1 << endl;
imshow(WINDOWNAME, g_dstImage6);
}
//-------------------【实现导向滤波器函数部分】-------------------------
void guidedFilter(Mat& srcMat, Mat& guidedMat, Mat& dstImage, int radius, double eps)
{
//------------【0】转换源图像信息,将输入扩展为64位浮点型,以便以后做乘法------------
srcMat.convertTo(srcMat, CV_64FC1);
guidedMat.convertTo(guidedMat, CV_64FC1);
//--------------【1】各种均值计算----------------------------------
Mat mean_p, mean_I, mean_Ip, mean_II;
boxFilter(srcMat, mean_p, CV_64FC1, Size(radius, radius)); //生成待滤波图像均值mean_p
boxFilter(guidedMat, mean_I, CV_64FC1, Size(radius, radius)); //生成导向图像均值mean_I
boxFilter(srcMat.mul(guidedMat), mean_Ip, CV_64FC1, Size(radius, radius)); //生成互相关均值mean_Ip
boxFilter(guidedMat.mul(guidedMat), mean_II, CV_64FC1, Size(radius, radius)); //生成导向图像自相关均值mean_II
//--------------【2】计算相关系数,计算Ip的协方差cov和I的方差var------------------
Mat cov_Ip = mean_Ip - mean_I.mul(mean_p);
Mat var_I = mean_II - mean_I.mul(mean_I);
//---------------【3】计算参数系数a、b-------------------
Mat a = cov_Ip / (var_I + eps);
Mat b = mean_p - a.mul(mean_I);
//--------------【4】计算系数a、b的均值-----------------
Mat mean_a, mean_b;
boxFilter(a, mean_a, CV_64FC1, Size(radius, radius));
boxFilter(b, mean_b, CV_64FC1, Size(radius, radius));
//---------------【5】生成输出矩阵------------------
dstImage = mean_a.mul(srcMat) + mean_b;
}
三、显示
文章来源:https://www.toymoban.com/news/detail-740068.html
文章来源地址https://www.toymoban.com/news/detail-740068.html
到了这里,关于基于opencv的几种图像滤波的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!