自定义的卷积神经网络模型CNN,对图片进行分类并使用图片进行测试模型-适合入门,从模型到训练再到测试,开源项目

这篇具有很好参考价值的文章主要介绍了自定义的卷积神经网络模型CNN,对图片进行分类并使用图片进行测试模型-适合入门,从模型到训练再到测试,开源项目。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

自定义的卷积神经网络模型CNN,对图片进行分类并使用图片进行测试模型-适合入门,从模型到训练再到测试:开源项目
开源项目完整代码及基础教程:
资料获取,关注公众号【一起来学习哟】获取

自定义的卷积神经网络模型CNN,对图片进行分类并使用图片进行测试模型-适合入门,从模型到训练再到测试,开源项目,深度学习,python,cnn,分类,开源
CNN模型:
自定义的卷积神经网络模型CNN,对图片进行分类并使用图片进行测试模型-适合入门,从模型到训练再到测试,开源项目,深度学习,python,cnn,分类,开源

1.导入必要的库和模块:

torch:PyTorch深度学习框架。

torchvision:PyTorch的计算机视觉库,用于处理图像数据。

transforms:包含数据预处理的模块。

nn:PyTorch的神经网络模块。

F:PyTorch的函数模块,包括各种激活函数等。

optim:优化算法模块。

2.数据预处理:

transforms.Compose:将一系列数据预处理步骤组合在一起。

transforms.ToTensor():将图像数据转换为张量。

transforms.Normalize:对图像数据进行归一化处理,以均值0.5和标准差0.5。

定义批处理大小:

batch_size:每个训练批次包含的图像数量。

加载训练集:

trainset:使用CIFAR-10数据集,设置训练标志为True。

torch.utils.data.DataLoader:创建用于加载训练数据的数据加载器,指定批处理大小和其他参数。

加载测试集:

testset:使用CIFAR-10数据集,设置训练标志为False。

torch.utils.data.DataLoader:创建用于加载测试数据的数据加载器,指定批处理大小和其他参数。

定义CNN模型:

My_CNN:自定义的卷积神经网络模型,包括卷积层、池化层和全连接层。

创建CNN模型、损失函数和优化器:

model:创建My_CNN模型的实例。

nn.CrossEntropyLoss():定义用于多分类问题的交叉熵损失函数。

optim.SGD:使用随机梯度下降优化器,指定学习率和动量。

训练模型:

epochs:指定训练轮数。

循环中的嵌套循环:迭代训练数据批次,进行前向传播、反向传播和参数优化。

保存模型:

model_path:指定模型保存的路径。

torch.save:保存训练后的模型。

在测试集上评估模型性能:

计算模型在测试集上的准确率。

计算每个类别的准确率。

具体代码来说:

transform = transforms.Compose(

[transforms.ToTensor(),

 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

解释:

transforms.Compose:这是一个用于组合多个数据预处理步骤的函数。它允许你按顺序应用多个转换,以便将原始数据转换为最终的形式。

transforms.ToTensor():这是一个数据预处理步骤,将图像数据转换为张量(tensor)的格式。在深度学习中,张量是常用的数据表示方式,因此需要将图像数据从常见的图像格式(如JPEG或PNG)转换为张量。

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)):这是另一个数据预处理步骤,用于对图像进行归一化处理。归一化的目的是将图像的像素值缩放到一个特定的范围,以便神经网络更容易学习。在这里,均值和标准差都被设置为0.5,这将使图像像素值在-1到1之间。

batch_size = 4

 trainset = torchvision.datasets.CIFAR10(root='./data', train=True,

                                        download=True, transform=transform)

 trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,

                                          shuffle=True, num_workers=0)

 testset = torchvision.datasets.CIFAR10(root='./data', train=False,

                                       download=True, transform=transform)

 testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,

                                         shuffle=False, num_workers=0)

解释:

batch_size = 4:定义了每个训练和测试批次中包含的图像数量。在深度学习中,通常将数据分成小批次进行训练,以便更有效地使用计算资源。

trainset 和 testset 的定义:这两行代码加载了CIFAR-10数据集的训练集和测试集,并进行了如下操作:

torchvision.datasets.CIFAR10:使用CIFAR-10数据集,它包括一组包含10个不同类别的图像数据,适用于图像分类任务。

root=‘./data’:指定数据集的存储目录,可以根据需要更改。

train=True 和 train=False:这两个参数分别用于加载训练集和测试集。

download=True:如果数据集尚未下载,会自动下载。

transform=transform:指定了前面定义的数据预处理管道,将在加载数据时应用。

trainloader 和 testloader 的定义:这两行代码创建了数据加载器,将数据集划分为批次以进行训练和测试。

torch.utils.data.DataLoader:这是PyTorch提供的用于加载数据的工具,可以自动处理数据的分批和洗牌等任务。

batch_size=batch_size:指定了每个批次的大小,即每次加载多少图像数据。

shuffle=True 和 shuffle=False:shuffle参数指定是否在每个epoch(训练轮次)之前对数据进行洗牌,以增加数据的随机性。通常在训练时进行洗牌,而在测试时不进行洗牌。

num_workers=0:这个参数指定用于数据加载的线程数。在此代码中,设置为0表示不使用多线程加载数据。如果有多个CPU核心可用,可以将其设置为大于0的值以加速数据加载。

class My_CNN(nn.Module):

def __init__(self):

    super().__init__()

省略部分代码

def forward(self, x):

省略部分代码

    return x

model = My_CNN()

criterion = nn.CrossEntropyLoss()

optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

解释:

这部分代码定义了一个卷积神经网络(CNN)模型,并创建了用于训练该模型的损失函数和优化器。让我们逐步解释每一部分:

class My_CNN(nn.Module)::这是一个自定义的CNN模型类的定义。这个类继承自nn.Module,这是PyTorch中构建神经网络模型的基本方式。

def init(self)::这是构造函数,用于初始化CNN模型的各个层。

super().init():调用父类nn.Module的构造函数以确保正确初始化模型。

self.conv1 和 self.conv2:这是两个卷积层的定义,分别具有不同数量的输入和输出通道以及卷积核的大小。

self.pool:这是最大池化层的定义,用于减小特征图的空间尺寸。

self.fc1、self.fc2 和 self.fc3:这是三个全连接层(也称为线性层),用于将卷积层的输出转换为最终的分类结果。

def forward(self, x)::这是前向传播函数,定义了模型的前向传播过程。

在前向传播中,输入x经过卷积层、激活函数(F.relu)、池化层以及全连接层,最终输出分类结果。

torch.flatten(x, 1):这一步将卷积层的输出扁平化,以便将其输入到全连接层。

返回值是模型的输出,表示对输入数据的分类预测。

model = My_CNN():创建了My_CNN类的一个实例,即CNN模型。

criterion = nn.CrossEntropyLoss():定义了损失函数,这里使用的是交叉熵损失函数。它用于衡量模型的预测与实际标签之间的差距,是一个用于监督学习任务的常见损失函数。

optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9):定义了优化器,这里使用的是随机梯度下降(SGD)。优化器负责更新模型的参数,以减小损失函数的值。学习率(lr)和动量(momentum)是优化算法的超参数,影响了参数更新的速度和方向。

epochs=5

for epoch in range(epochs): # loop over the dataset multiple times

running_loss = 0.0

for i, data in enumerate(trainloader, 0):

    # get the inputs; data is a list of [inputs, labels]

    inputs, labels = data



    # zero the parameter gradients

    optimizer.zero_grad()

    # forward + backward + optimize

    outputs = model(inputs)

    loss = criterion(outputs, labels)

    loss.backward()

    optimizer.step()

    # print statistics

    running_loss += loss.item()

    if i % 2000 == 1999:    # print every 2000 mini-batches

        print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')

        running_loss = 0.0

print('Finished Training')

name_path = './cnn_model_model.pth'

torch.save(model,name_path)

解释:

epochs=5:定义了训练的轮次(epochs),也就是模型将遍历整个训练数据集的次数。

for epoch in range(epochs)::这是一个循环,遍历每个训练轮次。

running_loss = 0.0:用于追踪每个训练轮次的累积损失。

for i, data in enumerate(trainloader, 0)::这个嵌套循环遍历训练数据集的小批次。

i 表示当前批次的索引。

data 包含了当前批次的输入数据和标签。

optimizer.zero_grad():在每个批次开始时,将优化器的梯度清零,以便准备计算新的梯度。

outputs = model(inputs):进行前向传播,将输入数据传递给模型,得到模型的输出。

loss = criterion(outputs, labels):计算损失,衡量模型的预测与实际标签之间的差距。使用了前面定义的交叉熵损失函数。

loss.backward():进行反向传播,计算模型参数相对于损失的梯度。

optimizer.step():根据计算得到的梯度,更新模型的参数,以减小损失函数的值。

running_loss += loss.item():累积当前批次的损失值,用于后续打印统计信息。

if i % 2000 == 1999::每经过2000个小批次,打印一次统计信息。这是为了跟踪训练进度,查看损失是否在逐渐减小。

print(f’[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}'):打印当前训练轮次和批次的损失值。

running_loss = 0.0:重置累积损失值,以便下一个统计周期。

print(‘Finished Training’):当所有轮次的训练完成后,打印 “Finished Training” 以指示训练结束。

name_path = ‘./cnn_model_model.pth’:指定模型的保存路径。

torch.save(model, name_path):将训练好的模型保存到指定路径。这样可以在之后的任务中加载和使用该模型,而不需要重新训练。

这段代码执行了模型的训练过程,循环遍历多个轮次,每轮次内遍历训练数据的小批次。在每个小批次中,进行前向传播、计算损失、反向传播以及参数更新。训练的目标是通过调整模型参数,减小损失函数的值,从而提高模型的性能。同时,每隔一定数量的小批次,打印训练统计信息以监视训练进度。最后,训练完成后,模型被保存到文件以备将来使用。

classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')

prepare to count predictions for each class

correct_pred = {classname: 0 for classname in classes}

total_pred = {classname: 0 for classname in classes}

again no gradients needed

with torch.no_grad():

for data in testloader:

    images, labels = data

    outputs = model(images)

    _, predictions = torch.max(outputs, 1)

    # collect the correct predictions for each class

    for label, prediction in zip(labels, predictions):

        if label == prediction:

            correct_pred[classes[label]] += 1

        total_pred[classes[label]] += 1

print accuracy for each class

for classname, correct_count in correct_pred.items():

accuracy = 100 * float(correct_count) / total_pred[classname]

print(f'Accuracy for class: {classname:5s} is {accuracy:.1f} %')

解释:

classes = (‘plane’, ‘car’, ‘bird’, ‘cat’,‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’):这是数据集中的类别标签,它们代表CIFAR-10数据集中的10个不同类别,分别是飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。

correct_pred 和 total_pred:这两个字典用于跟踪每个类别的正确预测数量和总预测数量,初始化为零。

with torch.no_grad()::这个语句块指示在此之后的计算不需要梯度信息。这是因为在测试阶段,我们不需要计算梯度,只是进行前向传播和计算准确度。

for data in testloader::遍历测试数据集的小批次。

images, labels = data:将小批次数据分成图像和对应的标签。

outputs = model(images):使用训练好的模型对图像进行预测,得到模型的输出。

_, predictions = torch.max(outputs, 1):通过 torch.max 函数找到每个样本预测的类别,即具有最高预测分数的类别。

for label, prediction in zip(labels, predictions)::通过 zip 函数,将实际标签和预测标签一一对应起来,以便比较它们。

if label == prediction::比较实际标签和预测标签,如果它们相等,表示模型做出了正确的预测。

correct_pred[classes[label]] += 1:对应类别的正确预测数量加一。

total_pred[classes[label]] += 1:对应类别的总预测数量加一。

for classname, correct_count in correct_pred.items()::遍历每个类别和其正确预测数量。

accuracy = 100 * float(correct_count) / total_pred[classname]:计算每个类别的准确度,即正确预测数量除以总预测数量,以百分比表示。

print(f’Accuracy for class: {classname:5s} is {accuracy:.1f} %'):打印每个类别的准确度,格式化输出。

总结:这段代码的目标是计算并打印出每个类别的分类准确度,以便评估模型在不同类别上的性能。这是在测试阶段对模型性能进行评估的一种方式。

测试模型的代码:

import torch

from PIL import Image

from torch import nn

import torch

import torchvision

import torch.nn.functional as F

device = torch.device('cuda')

image_path=“plane.png”

image =Image.open(image_path)

print(image)

image=image.convert('RGB')

transform=torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),torchvision.transforms.ToTensor()])

image=transform(image)

print(image.shape)

class My_CNN(nn.Module):

def __init__(self):

    super().__init__()

 省略部分代码        return x

#加载模型

model = torch.load(“cnn_net_model.pth”,map_location=torch.device(‘cuda’))#加载完成网络模型,映射

print(model)#维数不够

image = torch.reshape(image,(1,3,32,32))#这一个很重要,要满足四个通道

image=image.to(device)#做cuda变换,不然报错

model.eval()

with torch.no_grad():#节约内存性能

output=model(image)

#识别类别,数字最大的就是我们的结果

print(output)

解释:

导入必要的库和模块:

torch:PyTorch库,用于构建和运行深度学习模型。

PIL:Python Imaging Library,用于处理图像。

nn:PyTorch的神经网络模块。

F:PyTorch的函数模块。

device:将模型加载到GPU设备。

image_path:待分类的图像文件路径。

Image.open(image_path):使用PIL库打开图像文件。

图像的预处理:

image.convert(‘RGB’):将图像转换为RGB模式,以确保图像通道数为3。

transform:定义了一系列的图像预处理操作,包括将图像缩放到32x32像素大小并将其转换为PyTorch的Tensor数据类型。

image = transform(image):应用上述的预处理操作,将图像准备好以供模型处理。

定义神经网络模型:

My_CNN 类:这是一个自定义的卷积神经网络模型,包括两个卷积层,两个池化层,以及三个全连接层。这个模型与之前训练的CNN模型相似,用于图像分类任务。

加载预训练模型:

model = torch.load(“cnn_net_model.pth”, map_location=torch.device(‘cuda’)):加载之前训练并保存的CNN模型。map_location 参数指定了模型的加载位置,这里指定为CUDA/GPU。

调整输入图像的维度和数据类型:

image = torch.reshape(image, (1, 3, 32, 32)):将输入的图像数据调整为适合模型的维度(1个样本,3个通道,32x32像素大小)。

image = image.to(device):将图像数据移动到GPU设备,以便进行GPU上的推理。

模型推理和分类:

model.eval():将模型切换到推理模式,这意味着模型不再更新梯度。

with torch.no_grad()::在这个块中,不会计算或保存梯度信息,以提高性能和节省内存。

output = model(image):对输入的图像进行前向传播,得到模型的输出。

print(output):打印模型的输出,这是一个包含了不同类别的分数的张量。

测试结果:

自定义的卷积神经网络模型CNN,对图片进行分类并使用图片进行测试模型-适合入门,从模型到训练再到测试,开源项目,深度学习,python,cnn,分类,开源文章来源地址https://www.toymoban.com/news/detail-740644.html

到了这里,关于自定义的卷积神经网络模型CNN,对图片进行分类并使用图片进行测试模型-适合入门,从模型到训练再到测试,开源项目的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 卷积神经网络CNN的经典模型

    ILSVRC是一项基于 ImageNet 数据库的国际大规模视觉识别挑战赛(ImageNet Large Scale Visual Recognition Challenge,ILSVRC) (1)1958年,Rosenblatt发明了感知机。用于对输入的多维数据进行二分类且能够使用梯度下降法自动更新权值。 缺点:只能处理线性分类问题。 (2)1986年,Geoffrey Hi

    2024年02月07日
    浏览(27)
  • 卷积神经网络(CNN)网络结构及模型原理介绍

    本篇内容仅介绍卷积层,池化层等网络结构部分和构建原理,以及卷积的一些前提知识。全连接层的内容和分类模型及损失函数的构建优化和全连接神经网络相同,这里不再讲解。 神经网络模型构建及算法介绍: https://blog.csdn.net/stephon_100/article/details/125452961 卷积神经网络是

    2024年02月04日
    浏览(45)
  • 【AI机器学习入门与实战】CNN卷积神经网络识别图片验证码案例

    👍【 AI机器学习入门与实战 】目录 🍭 基础篇 🔥 第一篇:【AI机器学习入门与实战】AI 人工智能介绍 🔥 第二篇:【AI机器学习入门与实战】机器学习核心概念理解 🔥 第三篇:【AI机器学习入门与实战】机器学习算法都有哪些分类? 🔥 第四篇:【AI机器学习入门与实战】

    2024年02月02日
    浏览(48)
  • 机器学习-卷积神经网络CNN中的单通道和多通道图片差异

    最近在使用CNN的场景中,既有单通道的图片输入需求,也有多通道的图片输入需求,因此又整理回顾了一下单通道或者多通道卷积的差别,这里记录一下探索过程。 直接给出结论,单通道图片和多通道图片在经历了第一个卷积层以后,就没有单通道或者多通道的区别了,剩下

    2023年04月11日
    浏览(27)
  • CNN 卷积神经网络之 DenseNet 网络的分类统一项目(包含自定义数据集的获取)

    本章实现的项目是DenseNet 网络对花数据集的五分类,下载链接: 基于迁移学习的 DenseNet 图像分类项目 DenseNet 网络是在 ResNet 网络上的改进,大概的网络结构如下: 图像识别任务主要利用神经网络对图像进行特征提取,最后通过全连接层将特征和分类个数进行映射。传统的网

    2024年02月04日
    浏览(34)
  • Python实战 | 使用 Python 和 TensorFlow 构建卷积神经网络(CNN)进行人脸识别

    专栏集锦,大佬们可以收藏以备不时之需 Spring Cloud实战专栏:https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏:https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏:https://blog.csdn.net/superdangbo/category_9271502.html tensorflow专栏:https://blog.csdn.net/superdangbo/category_869

    2024年02月05日
    浏览(30)
  • 【Pytorch】计算机视觉项目——卷积神经网络CNN模型识别图像分类

    在上一篇笔记《【Pytorch】整体工作流程代码详解(新手入门)》中介绍了Pytorch的整体工作流程,本文继续说明如何使用Pytorch搭建卷积神经网络(CNN模型)来给图像分类。 其他相关文章: 深度学习入门笔记:总结了一些神经网络的基础概念。 TensorFlow专栏:《计算机视觉入门

    2024年02月05日
    浏览(38)
  • 深度学习基础入门篇[8]::计算机视觉与卷积神经网络、卷积模型CNN综述、池化讲解、CNN参数计算

    计算机视觉作为一门让机器学会如何去“看”的学科,具体的说,就是让机器去识别摄像机拍摄的图片或视频中的物体,检测出物体所在的位置,并对目标物体进行跟踪,从而理解并描述出图片或视频里的场景和故事,以此来模拟人脑视觉系统。因此,计算机视觉也通常被叫

    2024年02月05日
    浏览(62)
  • Python基于PyTorch实现卷积神经网络回归模型(CNN回归算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 卷积神经网络,简称为卷积网络,与普通神经网络的区别是它的卷积层内的神经元只覆盖输入特征局部范围的单元,具有稀疏连接(sparse connec

    2024年02月15日
    浏览(33)
  • Python基于PyTorch实现卷积神经网络分类模型(CNN分类算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 卷积神经网络,简称为卷积网络,与普通神经网络的区别是它的卷积层内的神经元只覆盖输入特征局部范围的单元,具有稀疏连接(sparse connec

    2024年02月15日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包