Python数据分析(四)-- 操作Excel文件

这篇具有很好参考价值的文章主要介绍了Python数据分析(四)-- 操作Excel文件。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 操作Excel文件-多种实现方式

        在实际生产中,经常会用到excel来处理数据,虽然excel有强大的公式,但是很多工作也只能半自动化,配合Python使用可以自动化部分日常工作,大大提升工作效率。

  • openpyxl:只允许读取和写入.xlsx格式文件并进行增删改增查。
  • xlwings:允许读取和写入.xlsx和.xls两种格式文件并进行增删改查。
  • xlsxwriter:只允许写入.xlsx格式的文件。

        比较三者,你可能会觉得 xlsxwriter 这个库也太不行了吧?其实不是的,在写入这方面前两个库比不上它,它的精华在于写入(多张样式图表、图片、表格样式修改等)。

1.1 xlsxwriter库储存数据到excel

        xlsxwriter是用于创建Excel XLSX文件的Python模块,可用于将文本、数字、公式和超链接写入Excel2007 + XLSX文件中的多个工作表。它支持格式化等功能。

优势:

  • 功能比较强:
    支持字体设置、前景色背景色、border设置、视图缩放(zoom)、单元格合并、autofilter、freeze panes、公式、data validation、单元格注释、行高和列宽设置
  • 支持大文件写入
  • 不支持读取、修改、XLS文件、透视表

1. 安装 xlsxwriter

pip install XlsxWriter -i https://pypi.douban.com/simple

2. 常用操作

添加工作表样式

bold = workbook.add_format({
                            'bold':  True,          # 字体加粗
                            'border': 1,            # 单元格边框宽度
                            'align': 'left',        # 水平对齐方式
                            'valign': 'vcenter',    # 垂直对齐方式
                            'fg_color': '#F4B084',  # 单元格背景颜色
                            'text_wrap': True,      # 是否自动换行
                            })

写入单元格数据

# 写入单个单元格数据
# row:行, col:列, data:要写入的数据, bold:单元格的样式
worksheet1.write(row, col, data, bold)
 
# 写入一整行,一整列
# A1:从A1单元格开始插入数据,按行插入, data:要写入的数据(格式为一个列表), bold:单元格的样式
worksheet1.write_row(“A1”, data, bold)
 
# A1:从A1单元格开始插入数据,按列插入, data:要写入的数据(格式为一个列表), bold:单元格的样式
worksheet1.write_column(“A1”,data,bold)

插入图片

# 第一个参数是插入的起始单元格,第二个参数是图片你文件的绝对路径
worksheet1.insert_image('A1','f:\\1.jpg')

写入超链接

worksheet1.write_url(row, col, "internal:%s!A1" % ("要关联的工作表表名"), string="超链接显示的名字")

插入图表

workbook.add_chartsheet(type=""# 参数中的type指的是图表类型,图表类型示例如下:
# [area:面积图,bar:条形图,column:直方图,doughnut:环状图,line:折线图,pie:饼状图,scatter:散点图,radar:雷达图,stock:箱线图]
  • 获得当前excel文件的所有工作表:workbook.worksheets()
  • 关闭excel文件: workbook.close()

3. 创建一个简单的 XLSX 文件

假设我们有一些月度支出的数据,我们希望将其转换为 Excel XLSX 文件:

import xlsxwriter as xw
 
 
def xw_toExcel(data, fileName):                 
    """xlsxwriter库储存数据到excel"""
    workbook = xw.Workbook(fileName)                # 创建工作簿
    worksheet1 = workbook.add_worksheet("sheet1")   # 创建子表
    worksheet1.activate()                           # 激活表
    title = ['序号', '项目支出', '消费金额']          # 设置表头
    worksheet1.write_row('A1', title)               # 从A1单元格开始写入表头
    row = 1                                         # 从第二行开始写入数据
    col = 0
    for record in data:                             # 迭代数据并逐行写入    
        worksheet1.write(row, col, record["id"])
        worksheet1.write(row, col+1, record["name"])
        worksheet1.write(row, col+2, record["expenses"])
        row += 1
    workbook.close()  # 关闭表
 
 
# "-------------数据用例-------------"
test_data = [
    {"id": 1, "name": "Rent", "expenses": 1000},
    {"id": 2, "name": "Gas", "expenses": 100},
    {"id": 3, "name": "Food", "expenses": 300},
    {"id": 4, "name": "Gym", "expenses": 50},
]
file_name = 'test.xlsx'
xw_toExcel(test_data, file_name)
Python数据分析(四)-- 操作Excel文件,# Python,python,excel,xlsxwriter,pandas,openpyxl

4. 写入不同的类型的数据到xlsx

接上一个章节,增加一个日期类型的列写入xlsx文件

from datetime import  datetime
import xlsxwriter as xw
 
 
def xw_toExcel(data, fileName):                 
    """xlsxwriter库储存数据到excel"""
    workbook = xw.Workbook(fileName)                # 创建工作簿
    worksheet1 = workbook.add_worksheet("sheet1")   # 创建子表
    bold = workbook.add_format({'bold': True})      # 新增一个粗体格式
    money_format = workbook.add_format({'num_format': '$#,##0'}) # 新增一个数值格式代表金额
    date_format = workbook.add_format({'num_format': 'yyyy-mm-dd'}) # 增加一个时间类型的格式
    worksheet1.set_column(1, 1, 15)                 # 调整列的宽度
    worksheet1.activate()                           # 激活表
    title = ['日期', '项目支出', '消费金额']          # 设置表头
    worksheet1.write_row('A1', title, bold)               # 从A1单元格开始写入表头
    row = 1                                         # 从第二行开始写入数据
    col = 0
    for record in data:                             # 迭代数据并逐行写入
        date = datetime.strptime(record["date"], "%Y-%m-%d")
        worksheet1.write_datetime(row, col, date, date_format)
        worksheet1.write_string(row, col+1, record["name"])
        worksheet1.write_number(row, col+2, record["expenses"], money_format)
        row += 1
    
    # 写公式
    worksheet1.write(row, 0, 'Total', bold)
    worksheet1.write_formula(row, 2, '=SUM(C2:C5)', money_format)

    workbook.close()  # 关闭表
 
# "-------------数据用例-------------"
test_data = [
    {"date": "2023-10-24", "name": "Rent", "expenses": 1000},
    {"date": "2023-10-25", "name": "Gas", "expenses": 100},
    {"date": "2023-10-27", "name": "Food", "expenses": 300},
    {"date": "2023-10-30", "name": "Gym", "expenses": 50},
]
file_name = 'test_1.xlsx'
xw_toExcel(test_data, file_name)
Python数据分析(四)-- 操作Excel文件,# Python,python,excel,xlsxwriter,pandas,openpyxl

5. 将数据库查询出来的数据录入xlsx文件

import pymysql
from datetime import datetime
import xlsxwriter

# 创建mysql连接
conn = pymysql.connect(host='localhost', port=3306, user='root', passwd='xxxxxx',db='school')
cursor = conn.cursor()

sql1 = "select cou_name, cou_credit from tb_course"
cursor.execute(sql1)

rows = cursor.fetchall()
fields = cursor.description     # 获取列名

# 创建一个workbook和worksheet
workbook = xlsxwriter.Workbook('course.xlsx')
worksheet = workbook.add_worksheet()

# 新增一个粗体格式
bold = workbook.add_format({'bold': True})

# 写表头
worksheet.write('A1', 'course', bold)
worksheet.write('B1', 'course_credit', bold)


# 数据坐标 0,0 ~ row, col   row取决于:result的行数;col取决于fields的总数
for row in range(1, len(rows)+1):
    for col in range(0, len(fields)):
        worksheet.write(row, col, u'%s' % rows[row-1][col])
workbook.close()

# 关闭连接
cursor.close()
conn.close()

测试记录:

Python数据分析(四)-- 操作Excel文件,# Python,python,excel,xlsxwriter,pandas,openpyxl

1.2 pandas库储存数据到excel

        在Python中,pandas是基于NumPy数组构建的,使数据预处理、清洗、分析工作变得更快更简单。pandas是专门为处理表格和混杂数据设计的,而NumPy更适合处理统一的数值数组数据。pandas有两个主要数据结构:Series和DataFrame。

        Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成,即index和values两部分,可以通过索引的方式选取Series中的单个或一组值。

        DataFrame是一个表格型的数据类型,每列值类型可以不同,是最常用的pandas对象。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)

import pandas as pd

def pd_to_excel(data, file_name):
    ids = []
    names = []
    prices = []
    for item in data:
        ids.append(item["id"])
        names.append(item["name"])
        prices.append(item["expenses"])
    df_data = {
        '序号': ids,
        '项目支出': names, 
        '消费金额': prices
    }
    df = pd.DataFrame(df_data)
    df.to_excel(file_name, index=False)

# "-------------数据用例-------------"
test_data = [
    {"id": 1, "name": "Rent", "expenses": 1000},
    {"id": 2, "name": "Gas", "expenses": 100},
    {"id": 3, "name": "Food", "expenses": 300},
    {"id": 4, "name": "Gym", "expenses": 50},
]
file_name = 'test_2.xlsx'
pd_to_excel(test_data, file_name)

1.3 openpyxl库储存数据到excel

安装:pip install openpyxl==2.2.6

打开已有文件

from openpyxl import load_workbook
wb2 = load_workbook('文件名称.xlsx')

根据数字得到字母,根据字母得到数字

from openpyxl.utils import get_column_letter, column_index_from_string
 
# 根据列的数字返回字母
print(get_column_letter(2)) # B
# 根据字母返回列的数字
print(column_index_from_string('D')) # 4

删除工作表

# 方式一
wb.remove(sheet)
# 方式二
del wb[sheet]

查看表名和选择表(sheet)

# 显示所有表名
print(wb.sheetnames)
['Sheet2', 'New Title', 'Sheet1']
 
# 遍历所有表
for sheet in wb:
    print(sheet.title)
 
# sheet 名称可以作为 key 进行索引
ws3 = wb["New Title"]
ws4 = wb.get_sheet_by_name("New Title")
ws is ws3 is ws4        # True

设置单元格风格

from openpyxl.styles import Font, colors, Alignment
 
# 字体
## 指定等线24号,加粗斜体,字体颜色红色。直接使用cell的font属性,将Font对象赋值给它
bold_itatic_24_font = Font(name='等线', size=24, italic=True, color=colors.RED, bold=True)
sheet['A1'].font = bold_itatic_24_font
 
# 对齐方式
 
## 使用cell的属性aligment,这里指定垂直居中和水平居中。除了center,还可以使用right、left等等参数。
## 设置B1中的数据垂直居中和水平居中
sheet['B1'].alignment = Alignment(horizontal='center', vertical='center')
 
## 设置行高和列宽
### 第2行行高
sheet.row_dimensions[2].height = 40
### C列列宽
sheet.column_dimensions['C'].width = 30
 
# 合并和拆分单元格
## 所谓合并单元格,即以合并区域的左上角的那个单元格为基准,覆盖其他单元格使之称为一个大的单元格。
## 相反,拆分单元格后将这个大单元格的值返回到原来的左上角位置。
# 合并单元格, 往左上角写入数据即可
sheet.merge_cells('B1:G1') # 合并一行中的几个单元格
sheet.merge_cells('A1:C3') # 合并一个矩形区域中的单元格
合并后只可以往左上角写入数据,也就是区间中:左边的坐标。
如果这些要合并的单元格都有数据,只会保留左上角的数据,其他则丢弃。换句话说若合并前不是在左上角写入数据,合并后单元格中不会有数据。
以下是拆分单元格的代码。拆分后,值回到A1位置。
sheet.unmerge_cells('A1:C3')

创建一个 XLSX 文件

import openpyxl as op

def op_to_excel(data, file_name):
    '''openpyxl库储存数据到excel'''
    wb = op.Workbook()          # 创建工作簿对象
    ws = wb['Sheet']            # 创建子表
    ws.append(['序号', '项目支出', '消费金额']) # 添加表头
    for item in data:
        d = item["id"], item["name"], id["expenses"]
        ws.append(d)        # 每次写入一行
    wb.save(file_name)

# "-------------数据用例-------------"
test_data = [
    {"id": 1, "name": "Rent", "expenses": 1000},
    {"id": 2, "name": "Gas", "expenses": 100},
    {"id": 3, "name": "Food", "expenses": 300},
    {"id": 4, "name": "Gym", "expenses": 50},
]
file_name = 'test_3.xlsx'
pd_to_excel(test_data, file_name)

小结
        各个库最适合的应用场景:文章来源地址https://www.toymoban.com/news/detail-740731.html

  • 不想使用 GUI 而又希望赋予 Excel 更多的功能,openpyxl 与 xlsxwriter,你可二者选其一;
  • 需要进行科学计算,处理大量数据,建议 pandas+xlsxwriter 或者 pandas+openpyxl;
  • 想要写 Excel 脚本,会 Python 但不会 VBA 的同学,可考虑 xlwings 或 DataNitro;
  • 至于 win32com,不管是功能还是性能都很强大,有 windows 编程经验的同学可以使用。不过它相当于是 windows COM 的封装,自身并没有很完善的文档,新手使用起来略有些痛苦。
Python数据分析(四)-- 操作Excel文件,# Python,python,excel,xlsxwriter,pandas,openpyxl

2 格式互换

2.1 .mat转.csv

import pandas as pd
import scipy
from scipy import io
import os
#遍历文件夹
for dirname, _, filenames in os.walk('./data'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
        # print(filename)
        # print(os.path.realpath(filename))  # 获取当前文件路径
        print(os.path.dirname(os.path.realpath(filename)))  # 从当前文件路径中获取目录
        # print(os.path.basename(os.path.realpath(filename)))  # 获取文件名
        (file, ext) = os.path.splitext(os.path.realpath(filename))
        # print(file)
        print(os.path.basename(os.path.realpath(file)))  # 获取文件名
        # print(ext)
        print(dirname)


        path = os.path.join(dirname, filename)
        # 1、导入文件
        matfile = scipy.io.loadmat(path)
        # 2、加载数据
        datafile = list(matfile.values())[-1]
        # 3、构造一个表的数据结构,data为表中的数据
        dfdata = pd.DataFrame(data=datafile)
        # 4、保存为.csv格式的路径
        datapath = dirname+'\\'+os.path.basename(os.path.realpath(file))+'.csv'
        # 5、保存为.txt格式的路径
        dfdata.to_csv(datapath, index=False)

2.2 .csv转.npy

import pandas as pd
import numpy as np

# 先用pandas读入csv
data = pd.read_csv("xxxx.csv")
# 再使用numpy保存为npy
np.save("xxx.npy", data)

参考

  • Python玩转Excel神器xlsxwriter详解:https://www.jianshu.com/p/6c979f0c6516
  • Python写入Excel文件-多种实现方式:https://blog.csdn.net/qq_44695727/article/details/109174842
  • python的xlsxwriter模块:https://blog.csdn.net/u010520724/article/details/115758171
  • Python-Excel 模块哪家强?:https://zhuanlan.zhihu.com/p/23998083
  • Getting Started with XlsxWriter:https://xlsxwriter.readthedocs.io/contents.html

到了这里,关于Python数据分析(四)-- 操作Excel文件的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Python数据分析】利用Python将多个EXCEL表格合并为一个EXCEL表格

            如何将EXCEL的多个表格合并成一个表格呢?比如每月销售额是一个单独的表格,我想把它们合并成一个表格,今天就与大家分享如何利用Python数据分析3分钟搞定,不管你要合并多少个文件,代码总是那么几行。不多说了,上案例。          现在有3个月的销售额,需

    2023年04月24日
    浏览(46)
  • 【头歌】——数据分析与实践-基于Python语言的文件与文件夹管理-文本 文件处理-利用csv模块进行csv文件的读写操作

    第1关 创建子文件夹 第2关 删除带有只读属性的文件 第3关 批量复制文件夹中的所有文件 未通过本题,如果您通过了本题欢迎补充到评论区,有时间我会整理进来 第1关 读取宋词文件,根据词人建立多个文件 第2关 读取宋词文件,并根据词人建立多个文件夹 第3关 读取宋词文

    2024年01月25日
    浏览(69)
  • Python数据分析之读取Excel数据并导入数据库

    曾某年某一天某地 时间如静止的空气 你的不羁 给我惊喜 ——《谁愿放手》陈慧琳 入职新公司两个多月,发现这边的数据基础很差,很多数据甚至没有系统承载,大量的Excel表,大量的人工处理工作,现阶段被迫“面向Excel”编程。本文主要介绍使用Python读取Excel数据并导入

    2024年01月25日
    浏览(52)
  • Microsoft Excel整合Python:数据分析的新纪元

    🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 🌊 《IDEA开发秘籍专栏》学会IDEA常用操作,工作效率翻倍~💐 🌊 《100天精通Golang(基础入门篇)》学会Golang语言

    2024年02月11日
    浏览(45)
  • 【100天精通Python】Day53:Python 数据分析_NumPy数据操作和分析进阶

    目录 1. 广播  2 文件输入和输出 3 随机数生成 4 线性代数操作  5 进阶操作

    2024年02月09日
    浏览(61)
  • 【Python】数据分析+数据挖掘——变量列的相关操作

    在Python和Pandas中,变量列操作指的是对DataFrame中的列进行操作,包括但不限于 选择列、重命名列、添加新列、删除列、修改列数据 等操作。这些操作可以帮助我们处理数据、分析数据和进行特征工程等。 概述 下面将会列出一些基本的操作指令 案例数据表university_rank.csv In

    2024年02月16日
    浏览(39)
  • python表格操作,数据提取分析的用法(2)

      之前我在博客里贴出了操作表格的代码,后面有2位粉丝私聊我说不会用啊,不知道怎么用,我听了之后就立马想出一篇如何使用的博客,谁叫我爱粉丝咧 好废话不多说,先贴出操作表格代码的地址 点这里 1)代码段 我们只需要传入表的路径和表页就能自动读取我们的数据

    2023年04月18日
    浏览(43)
  • 【100天精通Python】Day55:Python 数据分析_Pandas数据选取和常用操作

    目录 Pandas数据选择和操作 1 选择列和行 2 过滤数据 3 添加、删除和修改数据

    2024年02月09日
    浏览(60)
  • python 数据分析之 HTML文件解析

    HTML 是用来描述网页的一种语言。HTML 是一种在 Web 上使用的通用标记语言。HTML 允许你格式化文本,添加图片,创建链接、输入表单、框架和表格等等,并可将之存为文本文件,浏览器即可读取和显示。 HTML 指的是超文本标记语言: HyperText Markup Language HTML 不是一种编程语言,

    2024年02月16日
    浏览(46)
  • 【Python爬虫与数据分析】NumPy进阶——数组操作与运算

    目录 一、NumPy数组操作 1. ndarray更改形状 2. ndarray转置 3. ndarray组合 4. ndarray拆分 5. ndarray排序 二、NumPy数组运算 1. 基本运算 2. 逻辑函数 3. 数学函数 三、日期时间的表示和间隔 1. 日期时间的表示——datetime64 2. 日期时间的计算——timedelta64 3. datetime64与datetime的转换 在对数组进

    2024年02月15日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包