计算机视觉基础——基于yolov5-face算法的车牌检测

这篇具有很好参考价值的文章主要介绍了计算机视觉基础——基于yolov5-face算法的车牌检测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

车牌检测算法检测实现

1.环境布置

  • torch==1.8.1
  • torchvision==0.9.1
pip install -r requirements.txt

2.数据处理

2.1 CCPD数据集介绍

2.1.1 ccpd2019及2020

CCPD数据集主要采集于安徽某停车场一段时间内的数据,
所有图片尺寸固定为720×1160(w×h),
大约包含25w+的各种场景图片,如下图所示:

计算机视觉基础——基于yolov5-face算法的车牌检测,计算机视觉,YOLO,算法

类别 描述 图片数
CCPD-Base 通用车牌图片 200k
CCPD-FN 车牌离摄像头拍摄位置相对较近或较远 20k
CCPD-DB 车牌区域亮度较亮、较暗或者不均匀 20k
CCPD-Rotate 车牌水平倾斜 20 到 50 度,竖直倾斜-10到 10 度 10k
CCPD-Tilt 车牌水平倾斜 15 到 45 度,竖直倾斜 15 到 45 度 10k
CCPD-Weather 车牌在雨雪雾天气拍摄得到 10k
CCPD-Challenge 在车牌检测识别任务中较有挑战性的图片 10k
CCPD-Blur 由于摄像机镜头抖动导致的模楜车牌图片 5k
CCPD-NP 没有安装车牌的新车图片 5k
2.1.2 文件名字解析

计算机视觉基础——基于yolov5-face算法的车牌检测,计算机视觉,YOLO,算法

1、01:车牌占整个界面比例;(一般没用,可忽略)
2、86_91: 车牌的水平角度和垂直角度
3、298\&341_449\&414: 车牌标注框左上角和右下角的坐标
4、458\&394_308\&410_304\&357_454\&341:车牌四个顶点的坐标,顺序为右下、左下、左上、右上
5、0_0_14_28_24_26_29: 这个代表着和省份 (第一位)、地市 (第二位)、车牌号 (剩余部分) 的映射关系
6、124: 亮度,值越大亮度越高(仅供参考)
7、24:模糊度,值越小越模糊(仅供参考)

2.2数据集处理

2.2.1 CCPD数据处理

1.解压ccpd,cprd数据集2019,ccpd文件太大,解压慢,利用程序进行解压

import tarfile
# 指定tar文件路径
tar_path = r".\CCPD2019\CCPD2019.tar"
# 打开tar文件
with tarfile.open(tar_path, "r") as tar:
    # 解压所有文件到指定目录
    tar.extractall(r".\ccpd")
# 解压完成
print("解压完成")

ccpd数据集处理方法

import os
import shutil
import cv2
import numpy as np
from tqdm import tqdm


def allFilePath(rootPath, allFIleList):
    '''
    获取指定目录下所有以.jpg结尾的文件的路径,并将这些路径存储在一个列表中。
    '''
    fileList = os.listdir(rootPath)
    for temp in fileList:
        if os.path.isfile(os.path.join(rootPath, temp)):
            if temp.endswith(".jpg"):
                allFIleList.append(os.path.join(rootPath, temp))
        else:
            allFilePath(os.path.join(rootPath, temp), allFIleList)

def order_points(pts):
    '''
    对给定的坐标点进行排序,使得列表中的第一个点是左上角,第二个点是右上角,第三个点是右下角,第四个点是左下角。返回排序后的坐标点列表。
    '''
    # initialzie a list of coordinates that will be ordered
    # such that the first entry in the list is the top-left,
    # the second entry is the top-right, the third is the
    # bottom-right, and the fourth is the bottom-left
    pts = pts[:4, :]
    rect = np.zeros((5, 2), dtype="float32")

    # the top-left point will have the smallest sum, whereas
    # the bottom-right point will have the largest sum
    s = pts.sum(axis=1)
    rect[0] = pts[np.argmin(s)]
    rect[2] = pts[np.argmax(s)]

    # now, compute the difference between the points, the
    # top-right point will have the smallest difference,
    # whereas the bottom-left will have the largest difference
    diff = np.diff(pts, axis=1)
    rect[1] = pts[np.argmin(diff)]
    rect[3] = pts[np.argmax(diff)]
    # return the ordered coordinates
    return rect


def get_rect_and_landmarks(img_path):
    '''该函数用于从图像文件路径中解析出矩形框和关键点的坐标,并返回解析后的结果。'''
    file_name = img_path.split("/")[-1].split("-")
    landmarks_np = np.zeros((5, 2))
    rect = file_name[2].split("_")
    landmarks = file_name[3].split("_")
    rect_str = "&".join(rect)
    landmarks_str = "&".join(landmarks)
    rect = rect_str.split("&")
    landmarks = landmarks_str.split("&")
    rect = [int(x) for x in rect]
    landmarks = [int(x) for x in landmarks]
    for i in range(4):
        landmarks_np[i][0] = landmarks[2 * i]
        landmarks_np[i][1] = landmarks[2 * i + 1]
    #    middle_landmark_w =int((landmarks[4]+landmarks[6])/2)
    #    middle_landmark_h =int((landmarks[5]+landmarks[7])/2)
    #    landmarks.append(middle_landmark_w)
    #    landmarks.append(middle_landmark_h)
    landmarks_np_new = order_points(landmarks_np)
    #    landmarks_np_new[4]=np.array([middle_landmark_w,middle_landmark_h])
    return rect, landmarks, landmarks_np_new


def x1x2y1y2_yolo(rect, landmarks, img):
    h, w, c = img.shape
    rect[0] = max(0, rect[0])
    rect[1] = max(0, rect[1])
    rect[2] = min(w - 1, rect[2] - rect[0])
    rect[3] = min(h - 1, rect[3] - rect[1])
    annotation = np.zeros((1, 14))
    annotation[0, 0] = (rect[0] + rect[2] / 2) / w  # cx
    annotation[0, 1] = (rect[1] + rect[3] / 2) / h  # cy
    annotation[0, 2] = rect[2] / w  # w
    annotation[0, 3] = rect[3] / h  # h

    annotation[0, 4] = landmarks[0] / w  # l0_x
    annotation[0, 5] = landmarks[1] / h  # l0_y
    annotation[0, 6] = landmarks[2] / w  # l1_x
    annotation[0, 7] = landmarks[3] / h  # l1_y
    annotation[0, 8] = landmarks[4] / w  # l2_x
    annotation[0, 9] = landmarks[5] / h  # l2_y
    annotation[0, 10] = landmarks[6] / w  # l3_x
    annotation[0, 11] = landmarks[7] / h  # l3_y
    # annotation[0, 12] = landmarks[8] / w  # l4_x
    # annotation[0, 13] = landmarks[9] / h  # l4_y
    return annotation

def xywh2yolo(rect, landmarks_sort, img):
    h, w, c = img.shape
    rect[0] = max(0, rect[0])
    rect[1] = max(0, rect[1])
    rect[2] = min(w - 1, rect[2] - rect[0])
    rect[3] = min(h - 1, rect[3] - rect[1])
    annotation = np.zeros((1, 12))
    annotation[0, 0] = (rect[0] + rect[2] / 2) / w  # cx
    annotation[0, 1] = (rect[1] + rect[3] / 2) / h  # cy
    annotation[0, 2] = rect[2] / w  # w
    annotation[0, 3] = rect[3] / h  # h

    annotation[0, 4] = landmarks_sort[0][0] / w  # l0_x
    annotation[0, 5] = landmarks_sort[0][1] / h  # l0_y
    annotation[0, 6] = landmarks_sort[1][0] / w  # l1_x
    annotation[0, 7] = landmarks_sort[1][1] / h  # l1_y
    annotation[0, 8] = landmarks_sort[2][0] / w  # l2_x
    annotation[0, 9] = landmarks_sort[2][1] / h  # l2_y
    annotation[0, 10] = landmarks_sort[3][0] / w  # l3_x
    annotation[0, 11] = landmarks_sort[3][1] / h  # l3_y
    # annotation[0, 12] = landmarks_sort[4][0] / w  # l4_x
    # annotation[0, 13] = landmarks_sort[4][1] / h  # l4_y
    return annotation
def yolo2x1y1x2y2(annotation, img):
    h, w, c = img.shape
    rect = annotation[:, 0:4].squeeze().tolist()
    landmarks = annotation[:, 4:].squeeze().tolist()
    rect_w = w * rect[2]
    rect_h = h * rect[3]
    rect_x = int(rect[0] * w - rect_w / 2)
    rect_y = int(rect[1] * h - rect_h / 2)
    new_rect = [rect_x, rect_y, rect_x + rect_w, rect_y + rect_h]
    for i in range(5):
        landmarks[2 * i] = landmarks[2 * i] * w
        landmarks[2 * i + 1] = landmarks[2 * i + 1] * h
    return new_rect, landmarks

def update_txt(file_root = r"I:/CCPD2019/ccpd",save_img_path=r"H:\data\images",save_txt_path="H:\data\labels"):
    print(file_root, "start!!!!!")
    file_list = []
    count = 0
    allFilePath(file_root, file_list)
    # print(file_list)
    # exit()
    for img_path in file_list:
        count += 1
        # img_path = r"ccpd_yolo_test/02-90_85-173&466_452&541-452&553_176&556_178&463_454&460-0_0_6_26_15_26_32-68-53.jpg"
        text_path = img_path.replace(".jpg", ".txt")
        # 读取图片
        img = cv2.imread(img_path)
        rect, landmarks, landmarks_sort = get_rect_and_landmarks(img_path)
        # annotation=x1x2y1y2_yolo(rect,landmarks,img)
        annotation = xywh2yolo(rect, landmarks_sort, img)
        str_label = "0 "
        for i in range(len(annotation[0])):
            str_label = str_label + " " + str(annotation[0][i])
        str_label = str_label.replace('[', '').replace(']', '')
        str_label = str_label.replace(',', '') + '\n'
        # if os.path.exists(text_path):
        #     continue
        # else:
        shutil.move(img_path,os.path.join(os.path.join(save_img_path,os.path.basename(img_path))))
        text_path_save = os.path.join(save_txt_path,os.path.basename(text_path))

        # print(text_path_save)
        # exit()
        with open(text_path_save, "w") as f:
            f.write(str_label)

        print(text_path,"finished!")
        # print(count, img_path)
    print(os.getpid(),"end!!!")

def delete_non_jpg_images(image_folder):
    for filename in os.listdir(image_folder):
        if not filename.endswith(".jpg"):
            file_path = os.path.join(image_folder, filename)
            os.remove(file_path)
            print("删除完毕")

def move_files_to_folders(images_folder, folders_folder, labels_folder):
    for filename in os.listdir(images_folder):
        if filename.endswith(".jpg"):
            image_path = os.path.join(images_folder, filename)
            label_path = os.path.join(images_folder, os.path.splitext(filename)[0] + ".txt")
            folder_path = os.path.join(folders_folder, filename)
            labels_folder_path = os.path.join(labels_folder, os.path.splitext(filename)[0] + ".txt")
            if not os.path.exists(folder_path) and not os.path.exists(labels_folder_path) and os.path.exists(label_path):
                # 不存在同名
                shutil.move(image_path, folder_path)
                shutil.move(label_path, labels_folder_path)


if __name__ == '__main__':
    # 1. 处理ccpd文件夹
    import multiprocessing
    pool = multiprocessing.Pool(processes=14)  # 这里使用4个进程
    files = []
    for dir in os.listdir(r"I:/CCPD2019/ccpd"):
        files.append(os.path.join(r"I:/CCPD2019/ccpd",dir))
    # 使用进程池执行任务
    results = pool.map(update_txt,files)
    # 关闭进程池,防止新任务被提交
    pool.close()
    # 等待所有任务完成
    pool.join()
    # 2. 清理异常文件夹
    # 调用删除非jpg图像的函数
    image_folder = r"H:\data\images"
    # 删除文件
    delete_non_jpg_images(image_folder)

    # 3.加入一些新增文件夹文件
    # 指定文件夹路径
    # images_folder = r"single_yellow_val"
    # folders_folder = r"H:\data\images"
    # labels_folder = r"H:\data\labels"
    # # 调用移动文件的函数
    # move_files_to_folders(images_folder, folders_folder, labels_folder)

处理后文件,共计329499个文件
计算机视觉基础——基于yolov5-face算法的车牌检测,计算机视觉,YOLO,算法

处理后为类别+左上角+右下角+4个角点

计算机视觉基础——基于yolov5-face算法的车牌检测,计算机视觉,YOLO,算法

2.2.2 CRPD数据集处理

Unified Chinese License Plate Detection and Recognition with High Efficiency(Arxiv 2022)
这段话描述了标签文件夹中的txt文件的注释格式。每个txt文件的文件名与相应图像的名称相同。
在txt文件中,每一行表示图像中的一个车牌(LP)的注释。
一个LP的注释格式如下:

x1,y1,x2,y2,x3,y3,x4,y4,type,content

前八个数字表示边界四边形的坐标。
"type"注释表示LP的类型,0表示蓝色车牌,1表示黄色单线车牌,2表示黄色双线车牌,3表示白色车牌。
"content"注释表示LP的内容。

2.3 检测算法

YOLOv5-Face是YOLOv5的一个改进版本,特别针对人脸检测任务。它添加了一个5-Point Landmark Regression Head(关键点回归),并对Landmark Regression Head使用了Wing loss进行约束。此外,YOLOv5-Face还设计了不同模型尺寸的检测器,从大模型到超小模型,以实现在嵌入式或移动设备上的实时检测。在WiderFace数据集上的实验结果表明,YOLOv5-Face在几乎所有的Easy、Medium和Hard子集上都能达到最先进的性能,超过了特定设计的人脸检测器。与许多其他的人脸检测器不同,YOLOv5-Face把人脸检测作为一个一般的目标检测任务来看待。

这里将yolov5-face 修改为四个关键点,做目标检测任务

2.3.1 数据配置car_plate.yaml
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
# Train command: python train.py --data voc.yaml
# Default dataset location is next to /yolov5:
#   /parent_folder
#     /VOC
#     /yolov5


# download command/URL (optional)
download: bash data/scripts/get_voc.sh

# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: E:/data/train/images
val: E:/data/val_detect/val
# number of classes
nc: 2

# class names
names: [ 'single_plate','double_plate']

2.3.2 模型配置
# parameters
nc: 2  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 0.5  # layer channel multiple

# anchors
anchors:
  - [4,5,  8,10,  13,16]  # P3/8
  - [23,29,  43,55,  73,105]  # P4/16
  - [146,217,  231,300,  335,433]  # P5/32

# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, StemBlock, [32, 3, 2]],    # 0-P2/4
   [-1, 1, ShuffleV2Block, [128, 2]], # 1-P3/8
   [-1, 3, ShuffleV2Block, [128, 1]], # 2
   [-1, 1, ShuffleV2Block, [256, 2]], # 3-P4/16
   [-1, 7, ShuffleV2Block, [256, 1]], # 4
   [-1, 1, ShuffleV2Block, [512, 2]], # 5-P5/32
   [-1, 3, ShuffleV2Block, [512, 1]], # 6
  ]

# YOLOv5 head
head:
  [[-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P4
   [-1, 1, C3, [128, False]],  # 10

   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 2], 1, Concat, [1]],  # cat backbone P3
   [-1, 1, C3, [128, False]],  # 14 (P3/8-small)

   [-1, 1, Conv, [128, 3, 2]],
   [[-1, 11], 1, Concat, [1]],  # cat head P4
   [-1, 1, C3, [128, False]],  # 17 (P4/16-medium)

   [-1, 1, Conv, [128, 3, 2]],
   [[-1, 7], 1, Concat, [1]],  # cat head P5
   [-1, 1, C3, [128, False]],  # 20 (P5/32-large)

   [[14, 17, 20], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]
          

2.3.3 train.py
    parser = argparse.ArgumentParser()
    # 权重
    parser.add_argument('--weights', type=str, default='best.pt', help='initial weights path')
    # 默认配置文件
    parser.add_argument('--cfg', type=str, default='models/car_plate.yaml', help='model.yaml path')

    parser.add_argument('--data', type=str, default='data/car_plate.yaml', help='data.yaml path')
    parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
    parser.add_argument('--epochs', type=int, default=10)
    parser.add_argument('--batch-size', type=int, default=64, help='total batch size for all GPUs')
    parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
    parser.add_argument('--rect', action='store_true', help='rectangular training')
    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
    parser.add_argument('--notest', action='store_true', help='only test final epoch')
    parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
    parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--multi-scale', action='store_true', default=True, help='vary img-size +/- 50%%')
    parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
    parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
    parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
    parser.add_argument('--log-imgs', type=int, default=2, help='number of images for W&B logging, max 100')
    parser.add_argument('--log-artifacts', action='store_true', help='log artifacts, i.e. final trained model')
    parser.add_argument('--workers', type=int, default=4, help='maximum number of dataloader workers')
    parser.add_argument('--project', default='runs/train', help='save to project/name')
    parser.add_argument('--name', default='exp', help='save to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
2.3.4 训练结果

计算机视觉基础——基于yolov5-face算法的车牌检测,计算机视觉,YOLO,算法

计算机视觉基础——基于yolov5-face算法的车牌检测,计算机视觉,YOLO,算法

计算机视觉基础——基于yolov5-face算法的车牌检测,计算机视觉,YOLO,算法

2.4 部署

2.4.1 pth推理(detect.py)
#!/usr/bin/env python
import warnings
warnings.filterwarnings("ignore")
import os
import cv2
import numpy as np
import time
import torch
import copy
from models.experimental import attempt_load
from utils.datasets import letterbox
from utils.general import check_img_size, non_max_suppression_face, scale_coords
from utils.torch_utils import time_synchronized


clors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (0, 255, 255)]

def load_model(weights, device):
    model = attempt_load(weights, map_location=device)  # load FP32 model
    return model
def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None):
    # Rescale coords (xyxy) from img1_shape to img0_shape
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    coords[:, [0, 2, 4, 6]] -= pad[0]  # x padding
    coords[:, [1, 3, 5, 7]] -= pad[1]  # y padding
    coords[:, :10] /= gain
    # clip_coords(coords, img0_shape)
    coords[:, 0].clamp_(0, img0_shape[1])  # x1
    coords[:, 1].clamp_(0, img0_shape[0])  # y1
    coords[:, 2].clamp_(0, img0_shape[1])  # x2
    coords[:, 3].clamp_(0, img0_shape[0])  # y2
    coords[:, 4].clamp_(0, img0_shape[1])  # x3
    coords[:, 5].clamp_(0, img0_shape[0])  # y3
    coords[:, 6].clamp_(0, img0_shape[1])  # x4
    coords[:, 7].clamp_(0, img0_shape[0])  # y4
    # coords[:, 8].clamp_(0, img0_shape[1])  # x5
    # coords[:, 9].clamp_(0, img0_shape[0])  # y5
    return coords
def get_plate_rec_landmark(img, xyxy, conf, landmarks, class_num, device):
    h, w, c = img.shape
    result_dict = {}
    tl = 1 or round(0.002 * (h + w) / 2) + 1  # line/font thickness
    x1 = int(xyxy[0])
    y1 = int(xyxy[1])
    x2 = int(xyxy[2])
    y2 = int(xyxy[3])
    landmarks_np = np.zeros((4, 2))
    rect = [x1, y1, x2, y2]
    for i in range(4):
        point_x = int(landmarks[2 * i])
        point_y = int(landmarks[2 * i + 1])
        landmarks_np[i] = np.array([point_x, point_y])
    class_label = int(class_num)  # 车牌的的类型0代表单牌,1代表双层车牌
    result_dict['box'] = rect
    result_dict['landmarks'] = landmarks_np.tolist()
    result_dict['class'] = class_label
    return result_dict
class Detect:
    def __init__(self, conf_thres=0.6, iou_thres=0.5, img_size=640):
        self.conf_thres = conf_thres
        self.iou_thres = iou_thres
        self.img_size = img_size
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.detect_model = load_model("weights/best.pt", self.device)
    def detect(self, orgimg):
        dict_list = []
        if orgimg is None:
            return []
        if orgimg.shape[-1] == 4:
            orgimg = cv2.cvtColor(orgimg, cv2.COLOR_BGRA2BGR)
        h0, w0 = orgimg.shape[:2]  # orig hw
        img0 = copy.deepcopy(orgimg)
        r = self.img_size / max(h0, w0)  # resize image to img_size
        if r != 1:  # always resize down, only resize up if training with augmentation
            interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR
            img0 = cv2.resize(img0, (int(w0 * r), int(h0 * r)), interpolation=interp)
        imgsz = check_img_size(self.img_size, s=self.detect_model.stride.max())  # check img_size
        img = letterbox(img0, new_shape=imgsz,auto=False)[0]
        # Convert
        img = img[:, :, ::-1].transpose(2, 0, 1).copy()  # BGR to RGB, to 3x416x416
        # Run inference
        t0 = time.time()
        img = torch.from_numpy(img).to(self.device)
        img = img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)
        # Inference
        t1 = time_synchronized()
        pred = self.detect_model(img)[0]
        print(pred.shape)
        t2 = time_synchronized()
        print(f"infer time is {(t2-t1)*1000} ms")
        # Apply NMS
        pred = non_max_suppression_face(pred, self.conf_thres, self.iou_thres)
        # print(pred.shape)
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], orgimg.shape).round()
                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                det[:, 5:13] = scale_coords_landmarks(img.shape[2:], det[:, 5:13], orgimg.shape).round()
                for j in range(det.size()[0]):
                    xyxy = det[j, :4].view(-1).tolist()
                    conf = det[j, 4].cpu().numpy()
                    landmarks = det[j, 5:13].view(-1).tolist()
                    class_num = det[j, 13].cpu().numpy()
                    result_dict = get_plate_rec_landmark(orgimg, xyxy, conf, landmarks, class_num, self.device)
                    dict_list.append(result_dict)
        return dict_list
    def draw_result(self, orgimg, dict_list):
        '''
        返回绘制之后的原图
        '''
        for result in dict_list:
            rect_area = result['box']
            x, y, w, h = rect_area[0], rect_area[1], rect_area[2] - rect_area[0], rect_area[3] - rect_area[1]
            padding_w = 0.05 * w
            padding_h = 0.11 * h
            rect_area[0] = max(0, int(x - padding_w))
            rect_area[1] = max(0, int(y - padding_h))
            rect_area[2] = min(orgimg.shape[1], int(rect_area[2] + padding_w))
            rect_area[3] = min(orgimg.shape[0], int(rect_area[3] + padding_h))
            landmarks = result['landmarks']
            label = result['class']
            # result_str+=result+" "
            for i in range(4):  # 关键点
                cv2.circle(orgimg, (int(landmarks[i][0]), int(landmarks[i][1])), 5, clors[i], -1)
            cv2.rectangle(orgimg, (rect_area[0], rect_area[1]), (rect_area[2], rect_area[3]), clors[label], 2)  # 画框
            cv2.putText(img, str(label), (rect_area[0], rect_area[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, clors[label], 2)
        return orgimg
if __name__ == '__main__':
    det = Detect()
    img_dir = "images"
    save_dir = "result"
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    for file in os.listdir(img_dir):
        img_path = os.path.join(img_dir,file)
        img = cv2.imdecode(np.fromfile(img_path, dtype=np.uint8), -1)
        dict_list = det.detect(img)
        # print(dict_list)
        result_img = det.draw_result(img, dict_list)
        save_dir_path = os.path.join(save_dir,file)
        cv2.imwrite(save_dir_path,result_img)

2.4.2 onnx推理
import argparse
import time, os
import torch
from detect import scale_coords_landmarks, get_plate_rec_landmark
from torch2trt.trt_model import TrtModel
from utils.general import non_max_suppression_face, scale_coords, check_img_size
import cv2
import copy
from utils.torch_utils import time_synchronized
import numpy as np

clors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (0, 255, 255)]


def letterbox(img, size=(640, 640)):
    h, w, c = img.shape
    # 缩放因子
    ratio = min(size[0] / h, size[1] / w)
    new_h, new_w = int(h * ratio), int(w * ratio)
    top = int((size[0] - new_h) / 2)
    left = int((size[1] - new_w) / 2)
    bottom = size[0] - new_h - top
    right = size[1] - new_w - left
    img_resize = cv2.resize(img, (new_w, new_h))
    img = cv2.copyMakeBorder(img_resize, top, bottom, left, right, borderType=cv2.BORDER_CONSTANT,
                             value=(114, 114, 114))
    return img, ratio, left, top


def nms(boxes, iou_thresh):
    # numpy nms
    index = np.argsort(boxes[:, 4])[::-1]
    keep = []
    while index.size > 0:
        i = index[0]
        keep.append(i)
        x1 = np.maximum(boxes[i, 0], boxes[index[1:], 0])
        y1 = np.maximum(boxes[i, 1], boxes[index[1:], 1])
        x2 = np.minimum(boxes[i, 2], boxes[index[1:], 2])
        y2 = np.minimum(boxes[i, 3], boxes[index[1:], 3])
        w = np.maximum(0, x2 - x1)
        h = np.maximum(0, y2 - y1)
        inter_area = w * h
        union_area = (boxes[i, 2] - boxes[i, 0]) * (boxes[i, 3] - boxes[i, 1]) + (
                boxes[index[1:], 2] - boxes[index[1:], 0]) * (boxes[index[1:], 3] - boxes[index[1:], 1])
        iou = inter_area / (union_area - inter_area)
        idx = np.where(iou <= iou_thresh)[0]
        index = index[idx + 1]
    return keep


def restore_box(boxes, r, left, top):  # 返回原图上面的坐标
    boxes[:, [0, 2, 5, 7, 9, 11]] -= left
    boxes[:, [1, 3, 6, 8, 10, 12]] -= top
    boxes[:, [0, 2, 5, 7, 9, 11]] /= r
    boxes[:, [1, 3, 6, 8, 10, 12]] /= r
    return boxes


def post_precessing(dets, ratio, left, top, conf_thresh=0.3, iou_thresh=0.5):  # 检测后处理
    # 选取大于置信度的
    choice = dets[:, :, 4] > conf_thresh
    dets = dets[choice]
    dets[:, 13:15] *= dets[:, 4:5]
    box = dets[:, :4]
    boxes = xywh2xyxy(box)
    score = np.max(dets[:, 13:15], axis=-1, keepdims=True)
    index = np.argmax(dets[:, 13:15], axis=-1).reshape(-1, 1)
    output = np.concatenate((boxes, score, dets[:, 5:13], index), axis=1)
    reserve_ = nms(output, iou_thresh)
    output = output[reserve_]
    output = restore_box(output, ratio, left, top)
    return output


def xywh2xyxy(boxes):  # xywh坐标变为 左上 ,右下坐标 x1,y1  x2,y2
    xywh = copy.deepcopy(boxes)
    xywh[:, 0] = boxes[:, 0] - boxes[:, 2] / 2
    xywh[:, 1] = boxes[:, 1] - boxes[:, 3] / 2
    xywh[:, 2] = boxes[:, 0] + boxes[:, 2] / 2
    xywh[:, 3] = boxes[:, 1] + boxes[:, 3] / 2
    return xywh


class Detect:
    def __init__(self, conf_thres=0.6, iou_thres=0.5, img_size=640, trt_path="weights/best.trt"):
        self.conf_thres = conf_thres
        self.iou_thres = iou_thres
        self.img_size = img_size
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.detect_model = TrtModel(trt_path)

    def detect_processing(self, img, img_size=(640, 640)):
        img, ratio, left, top = letterbox(img, size=img_size)
        img = img[:, :, ::-1].transpose(2, 0, 1).copy().astype(np.float32)
        img = img / 255
        img = img.reshape(1, *img.shape)
        return img, ratio, left, top

    def detect(self, orgimg):
        dict_list = []
        if orgimg is None:
            return []
        if orgimg.shape[-1] == 4:
            orgimg = cv2.cvtColor(orgimg, cv2.COLOR_BGRA2BGR)
        h0, w0 = orgimg.shape[:2]  # orig hw
        img0 = copy.deepcopy(orgimg)
        # imgsz = check_img_size(self.img_size, s=32)  # check img_size
        img, ratio, left, top = self.detect_processing(img0)
        if img.ndim == 3:
            img = img[None, ...]
        # Inference
        t1 = time_synchronized()
        pred = self.detect_model(img).reshape([1, 25200, 15])
        output = post_precessing(pred, ratio, left, top, conf_thresh=self.conf_thres, iou_thresh=self.iou_thres)
        for output in output:
            result_dict = {}
            rect = output[:4].astype(int).tolist()
            land_marks = output[5:13].astype(int).reshape(4, 2)
            conf =  output[4].astype(int).tolist()
            result_dict['box'] = rect
            result_dict['class'] = conf
            result_dict['landmarks'] = land_marks.tolist()
            dict_list.append(result_dict)
        return dict_list

    def draw_result(self, orgimg, dict_list):
        '''
        返回绘制之后的原图
        '''
        for result in dict_list:
            rect_area = result['box']
            x, y, w, h = rect_area[0], rect_area[1], rect_area[2] - rect_area[0], rect_area[3] - rect_area[1]
            padding_w = 0.05 * w
            padding_h = 0.11 * h
            rect_area[0] = max(0, int(x - padding_w))
            rect_area[1] = max(0, int(y - padding_h))
            rect_area[2] = min(orgimg.shape[1], int(rect_area[2] + padding_w))
            rect_area[3] = min(orgimg.shape[0], int(rect_area[3] + padding_h))
            landmarks = result['landmarks']
            label = result['class']
            # result_str+=result+" "
            for i in range(4):  # 关键点
                cv2.circle(orgimg, (int(landmarks[i][0]), int(landmarks[i][1])), 5, clors[i], -1)
            cv2.rectangle(orgimg, (rect_area[0], rect_area[1]), (rect_area[2], rect_area[3]), clors[label], 2)  # 画框
            cv2.putText(img, str(label), (rect_area[0], rect_area[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, clors[label], 2)
        return orgimg
    def __del__(self):

        self.detect_model.destroy()

if __name__ == '__main__':
    # ============可视化================
    # img_vis(img, orgimg, pred)
    det = Detect()
    img_dir = "images"
    save_dir = "result"
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    for file in os.listdir(img_dir):
        img_path = os.path.join(img_dir, file)
        img = cv2.imdecode(np.fromfile(img_path, dtype=np.uint8), -1)
        dict_list = det.detect(img)
        print(dict_list)
        result_img = det.draw_result(img, dict_list)
        save_dir_path = os.path.join(save_dir, file)
        cv2.imwrite(save_dir_path, result_img)

2.4.3 trt推理
import argparse
import time,os
import torch
from detect import scale_coords_landmarks, get_plate_rec_landmark
from torch2trt.trt_model import TrtModel
from utils.datasets import letterbox
from utils.general import non_max_suppression_face, scale_coords, check_img_size
import cv2
import copy
from utils.torch_utils import time_synchronized
import numpy as np
clors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (0, 255, 255)]
def img_process(img_path,long_side=640,stride_max=32):
    '''
    图像预处理
    '''
    orgimg=cv2.imread(img_path)
    img0 = copy.deepcopy(orgimg)
    h0, w0 = orgimg.shape[:2]  # orig hw
    r = long_side/ max(h0, w0)  # resize image to img_size
    if r != 1:  # always resize down, only resize up if training with augmentation
        interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR
        img0 = cv2.resize(img0, (int(w0 * r), int(h0 * r)), interpolation=interp)

    imgsz = check_img_size(long_side, s=stride_max)  # check img_size

    img = letterbox(img0, new_shape=imgsz,auto=False)[0] # auto True最小矩形   False固定尺度
    # Convert
    img = img[:, :, ::-1].transpose(2, 0, 1).copy()  # BGR to RGB, to 3x416x416
    img = torch.from_numpy(img)
    img = img.float()  # uint8 to fp16/32
    img /= 255.0  # 0 - 255 to 0.0 - 1.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)
    return img,orgimg

class Detect:
    def __init__(self, conf_thres=0.6, iou_thres=0.5, img_size=640,trt_path="weights/best.trt"):
        self.conf_thres = conf_thres
        self.iou_thres = iou_thres
        self.img_size = img_size
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.detect_model = TrtModel(trt_path)
    def detect(self, orgimg):
        dict_list = []
        if orgimg is None:
            return []
        if orgimg.shape[-1] == 4:
            orgimg = cv2.cvtColor(orgimg, cv2.COLOR_BGRA2BGR)
        h0, w0 = orgimg.shape[:2]  # orig hw
        img0 = copy.deepcopy(orgimg)
        r = self.img_size / max(h0, w0)  # resize image to img_size
        if r != 1:  # always resize down, only resize up if training with augmentation
            interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR
            img0 = cv2.resize(img0, (int(w0 * r), int(h0 * r)), interpolation=interp)
        imgsz = check_img_size(self.img_size, s=32)  # check img_size
        img = letterbox(img0, new_shape=imgsz,auto=False)[0]
        # Convert
        img = img[:, :, ::-1].transpose(2, 0, 1).copy()  # BGR to RGB, to 3x416x416
        # Run inference
        t0 = time.time()
        # img = torch.from_numpy(img).to(self.device)
        img = img.astype(float)  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndim == 3:
            img = img[None,...]
        # Inference
        t1 = time_synchronized()
        pred = self.detect_model(img).reshape([1, 25200, 15])

        t2 = time_synchronized()
        print(f"infer time is {(t2-t1)*1000} ms")
        # Apply NMS
        # pred = torch.tensor(pred)
        pred = non_max_suppression_face(torch.tensor(pred), self.conf_thres, self.iou_thres)
        # print(type(pred))
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if len(det):
                # Rescale boxes from img_size to im0 size
                # print(type(det))
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], orgimg.shape).round()
                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                det[:, 5:13] = scale_coords_landmarks(img.shape[2:], det[:, 5:13], orgimg.shape).round()
                for j in range(det.size()[0]):
                    xyxy = det[j, :4].view(-1).tolist()
                    conf = det[j, 4].cpu().numpy()
                    landmarks = det[j, 5:13].view(-1).tolist()
                    class_num = det[j, 13].cpu().numpy()
                    result_dict = get_plate_rec_landmark(orgimg, xyxy, conf, landmarks, class_num, self.device)
                    dict_list.append(result_dict)
        return dict_list
    def draw_result(self, orgimg, dict_list):
        '''
        返回绘制之后的原图
        '''
        for result in dict_list:
            rect_area = result['box']
            x, y, w, h = rect_area[0], rect_area[1], rect_area[2] - rect_area[0], rect_area[3] - rect_area[1]
            padding_w = 0.05 * w
            padding_h = 0.11 * h
            rect_area[0] = max(0, int(x - padding_w))
            rect_area[1] = max(0, int(y - padding_h))
            rect_area[2] = min(orgimg.shape[1], int(rect_area[2] + padding_w))
            rect_area[3] = min(orgimg.shape[0], int(rect_area[3] + padding_h))
            landmarks = result['landmarks']
            label = result['class']
            # result_str+=result+" "
            for i in range(4):  # 关键点
                cv2.circle(orgimg, (int(landmarks[i][0]), int(landmarks[i][1])), 5, clors[i], -1)
            cv2.rectangle(orgimg, (rect_area[0], rect_area[1]), (rect_area[2], rect_area[3]), clors[label], 2)  # 画框
            cv2.putText(img, str(label), (rect_area[0], rect_area[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, clors[label], 2)
        return orgimg

    def __del__(self):
        self.detect_model.destroy()

if __name__ == '__main__':
    # ============可视化================
    # img_vis(img, orgimg, pred)
    det = Detect()
    img_dir = "images"
    save_dir = "result"
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    for file in os.listdir(img_dir):
        img_path = os.path.join(img_dir, file)
        img = cv2.imdecode(np.fromfile(img_path, dtype=np.uint8), -1)
        dict_list = det.detect(img)
        print(dict_list)
        result_img = det.draw_result(img, dict_list)
        save_dir_path = os.path.join(save_dir, file)
        cv2.imwrite(save_dir_path, result_img)

2.4.4 numpy版本trt推理
import argparse
import time, os
import torch
from detect import scale_coords_landmarks, get_plate_rec_landmark
from torch2trt.trt_model import TrtModel
from utils.general import non_max_suppression_face, scale_coords, check_img_size
import cv2
import copy
from utils.torch_utils import time_synchronized
import numpy as np
clors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (0, 255, 255)]
def letterbox(img, size=(640, 640)):
    h, w, c = img.shape
    # 缩放因子
    ratio = min(size[0] / h, size[1] / w)
    new_h, new_w = int(h * ratio), int(w * ratio)
    top = int((size[0] - new_h) / 2)
    left = int((size[1] - new_w) / 2)
    bottom = size[0] - new_h - top
    right = size[1] - new_w - left
    img_resize = cv2.resize(img, (new_w, new_h))
    img = cv2.copyMakeBorder(img_resize, top, bottom, left, right, borderType=cv2.BORDER_CONSTANT,
                             value=(114, 114, 114))
    return img, ratio, left, top


def nms(boxes, iou_thresh):
    # numpy nms
    index = np.argsort(boxes[:, 4])[::-1]
    keep = []
    while index.size > 0:
        i = index[0]
        keep.append(i)
        x1 = np.maximum(boxes[i, 0], boxes[index[1:], 0])
        y1 = np.maximum(boxes[i, 1], boxes[index[1:], 1])
        x2 = np.minimum(boxes[i, 2], boxes[index[1:], 2])
        y2 = np.minimum(boxes[i, 3], boxes[index[1:], 3])
        w = np.maximum(0, x2 - x1)
        h = np.maximum(0, y2 - y1)
        inter_area = w * h
        union_area = (boxes[i, 2] - boxes[i, 0]) * (boxes[i, 3] - boxes[i, 1]) + (
                boxes[index[1:], 2] - boxes[index[1:], 0]) * (boxes[index[1:], 3] - boxes[index[1:], 1])
        iou = inter_area / (union_area - inter_area)
        idx = np.where(iou <= iou_thresh)[0]
        index = index[idx + 1]
    return keep


def restore_box(boxes, r, left, top):  # 返回原图上面的坐标
    boxes[:, [0, 2, 5, 7, 9, 11]] -= left
    boxes[:, [1, 3, 6, 8, 10, 12]] -= top
    boxes[:, [0, 2, 5, 7, 9, 11]] /= r
    boxes[:, [1, 3, 6, 8, 10, 12]] /= r
    return boxes


def post_precessing(dets, ratio, left, top, conf_thresh=0.3, iou_thresh=0.5):  # 检测后处理
    # 选取大于置信度的
    choice = dets[:, :, 4] > conf_thresh
    dets = dets[choice]
    dets[:, 13:15] *= dets[:, 4:5]
    box = dets[:, :4]
    boxes = xywh2xyxy(box)
    score = np.max(dets[:, 13:15], axis=-1, keepdims=True)
    index = np.argmax(dets[:, 13:15], axis=-1).reshape(-1, 1)
    output = np.concatenate((boxes, score, dets[:, 5:13], index), axis=1)
    reserve_ = nms(output, iou_thresh)
    output = output[reserve_]
    output = restore_box(output, ratio, left, top)
    return output


def xywh2xyxy(boxes):  # xywh坐标变为 左上 ,右下坐标 x1,y1  x2,y2
    xywh = copy.deepcopy(boxes)
    xywh[:, 0] = boxes[:, 0] - boxes[:, 2] / 2
    xywh[:, 1] = boxes[:, 1] - boxes[:, 3] / 2
    xywh[:, 2] = boxes[:, 0] + boxes[:, 2] / 2
    xywh[:, 3] = boxes[:, 1] + boxes[:, 3] / 2
    return xywh


class Detect:
    def __init__(self, conf_thres=0.6, iou_thres=0.5, img_size=640, trt_path="weights/best.trt"):
        self.conf_thres = conf_thres
        self.iou_thres = iou_thres
        self.img_size = img_size
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.detect_model = TrtModel(trt_path)

    def detect_processing(self, img, img_size=(640, 640)):
        img, ratio, left, top = letterbox(img, size=img_size)
        img = img[:, :, ::-1].transpose(2, 0, 1).copy().astype(np.float32)
        img = img / 255
        img = img.reshape(1, *img.shape)
        return img, ratio, left, top

    def detect(self, orgimg):
        dict_list = []
        if orgimg is None:
            return []
        if orgimg.shape[-1] == 4:
            orgimg = cv2.cvtColor(orgimg, cv2.COLOR_BGRA2BGR)
        h0, w0 = orgimg.shape[:2]  # orig hw
        img0 = copy.deepcopy(orgimg)
        # imgsz = check_img_size(self.img_size, s=32)  # check img_size
        img, ratio, left, top = self.detect_processing(img0)
        if img.ndim == 3:
            img = img[None, ...]
        # Inference
        t1 = time_synchronized()
        pred = self.detect_model(img).reshape([1, 25200, 15])
        output = post_precessing(pred, ratio, left, top, conf_thresh=self.conf_thres, iou_thresh=self.iou_thres)
        for output in output:
            result_dict = {}
            rect = output[:4].astype(int).tolist()
            land_marks = output[5:13].astype(int).reshape(4, 2)
            conf =  output[4].astype(int).tolist()
            result_dict['box'] = rect
            result_dict['class'] = conf
            result_dict['landmarks'] = land_marks.tolist()
            dict_list.append(result_dict)
        return dict_list

    def draw_result(self, orgimg, dict_list):
        '''
        返回绘制之后的原图
        '''
        for result in dict_list:
            rect_area = result['box']
            x, y, w, h = rect_area[0], rect_area[1], rect_area[2] - rect_area[0], rect_area[3] - rect_area[1]
            padding_w = 0.05 * w
            padding_h = 0.11 * h
            rect_area[0] = max(0, int(x - padding_w))
            rect_area[1] = max(0, int(y - padding_h))
            rect_area[2] = min(orgimg.shape[1], int(rect_area[2] + padding_w))
            rect_area[3] = min(orgimg.shape[0], int(rect_area[3] + padding_h))
            landmarks = result['landmarks']
            label = result['class']
            # result_str+=result+" "
            for i in range(4):  # 关键点
                cv2.circle(orgimg, (int(landmarks[i][0]), int(landmarks[i][1])), 5, clors[i], -1)
            cv2.rectangle(orgimg, (rect_area[0], rect_area[1]), (rect_area[2], rect_area[3]), clors[label], 2)  # 画框
            cv2.putText(img, str(label), (rect_area[0], rect_area[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, clors[label], 2)
        return orgimg
    def __del__(self):

        self.detect_model.destroy()

if __name__ == '__main__':
    # ============可视化================
    # img_vis(img, orgimg, pred)
    det = Detect()
    img_dir = "images"
    save_dir = "result"
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    for file in os.listdir(img_dir):
        img_path = os.path.join(img_dir, file)
        img = cv2.imdecode(np.fromfile(img_path, dtype=np.uint8), -1)
        dict_list = det.detect(img)
        print(dict_list)
        result_img = det.draw_result(img, dict_list)
        save_dir_path = os.path.join(save_dir, file)
        cv2.imwrite(save_dir_path, result_img)

2.4.5 推理结果展示

计算机视觉基础——基于yolov5-face算法的车牌检测,计算机视觉,YOLO,算法

计算机视觉基础——基于yolov5-face算法的车牌检测,计算机视觉,YOLO,算法

计算机视觉基础——基于yolov5-face算法的车牌检测,计算机视觉,YOLO,算法

计算机视觉基础——基于yolov5-face算法的车牌检测,计算机视觉,YOLO,算法

计算机视觉基础——基于yolov5-face算法的车牌检测,计算机视觉,YOLO,算法

计算机视觉基础——基于yolov5-face算法的车牌检测,计算机视觉,YOLO,算法

参考开源

Chinese_license_plate_detection_recognition文章来源地址https://www.toymoban.com/news/detail-740761.html

到了这里,关于计算机视觉基础——基于yolov5-face算法的车牌检测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 计算机视觉框架OpenMMLab(一):计算机视觉基础

    👨‍💻 作者简介: 大数据专业硕士在读,CSDN人工智能领域博客专家,阿里云专家博主,专注大数据与人工智能知识分享。 公众号: GoAI的学习小屋,免费分享书籍、简历、导图等资料,更有交流群分享AI和大数据,加群方式公众号回复“加群”或➡️点击链接。 🎉 专栏推

    2024年01月22日
    浏览(55)
  • 改良YOLOv8网络架构 | 采用SwinTransformer网络 | 借助位移窗口实现视觉变换 | 计算机视觉

    改良YOLOv8网络架构 | 采用SwinTransformer网络 | 借助位移窗口实现视觉变换 | 计算机视觉 随着计算机视觉技术的不断发展,研究人员们也在不断尝试对各种神经网络进行改良,以提高它们的性能和准确度。其中比较流行的一个目标检测算法就是YOLOv8,但是它依然存在一些不足之处

    2024年02月08日
    浏览(54)
  • 改进YOLOv8 | 主干网络篇 | YOLOv8采用FasterNet提升计算机视觉速度

    深度学习在计算机视觉领域的应用越来越广泛,而目标检测是其中非常重要的一个任务。YOLOv8作为一种先进的目标检测算法,以其快速和准确的特性而备受关注。然而,为了进一步提升YOLOv8的性能和速度,我们可以通过更换主干网络来达到这个目标。本文将介绍一种名为Fas

    2024年01月23日
    浏览(60)
  • 计算机视觉——yolov5回归与跨网格预测、训练技巧(下篇)

    在线版本:浏览器中输入链接: https://lutzroeder.github.io/netron/ netron官方的Github链接:https://github.com/lutzroeder/netron 一个小实验: Focus()模块是为减少错误和提高速度而设计的,而不是提高精度。 在CSP上添加SPP块,因为它显着地增加了接收字段,分离出了最重要的内容,几乎没有降低

    2023年04月22日
    浏览(47)
  • 【计算机视觉】YOLOv8的测试以及训练过程(含源代码)

    YOLOv8是来自Ultralytics的最新的基于YOLO的对象检测模型系列,提供最先进的性能。 利用以前的 YOLO 版本,YOLOv8模型更快、更准确,同时为训练模型提供统一框架,以执行: 物体检测 实例分割 图像分类 Ultralytics为YOLO模型发布了一个全新的存储库。它被构建为 用于训练对象检测

    2024年02月13日
    浏览(44)
  • 【计算机视觉】目标检测—yolov5自定义模型的训练以及加载

    目标检测是计算机视觉主要应用方向之一。目标检测通常包括两方面的工作,首先是招到目标,然后就是识别目标。目标检测可以分为单物体检测和多物体检测。常用的目标检测方法分为两大流派:一步走(one_stage)算法:直接对输入的图像应用算法并输出类别和相应的定位

    2024年02月01日
    浏览(60)
  • 计算机视觉基础(7)——相机基础

    从这一节开始,我们来学习 几何视觉 。中层视觉包括 相机模型、单目几何视觉、对极几何视觉和多目立体视觉等 。在学习几何视觉最开始,我们先来学习一下 相机模型 ,了解相机的基本原理,了解相机如何记录影像。 相机用于生成 二维的图像 ,图像最小的单元被称为

    2024年02月04日
    浏览(51)
  • 计算机视觉基础:锚框

    目标检测算法通常会在输入图像中采样大量的区域,然后判断这些区域中是否包含我们感兴趣的目标,并调整区域边界从而更准确地预测目标的真实边界框(ground-truth bounding box)。 不同的模型使用的区域采样方法可能不同。 这里我们介绍其中的一种方法:以每个像素为中心

    2024年02月07日
    浏览(68)
  • 计算机视觉基础

    目录 颜色空间: RGB颜色空间: CMY(K)颜色空间: HSV颜色空间: CIE-XYZ颜色空间: 图片存储原理: 图像增强的目标: 图像处理方法: 点运算: 直方图: 均衡化:  自适应直方图均衡: 形态学运算 : 临域运算: RGB颜色空间: 加法混色,彩色显示屏(越叠加越白) 3个通道:红

    2024年04月28日
    浏览(35)
  • YOLOv8轻量化:MobileNetV3,理想的轻量级骨架选择 - 计算机视觉

    YOLOv8是一种广泛应用于目标检测任务的深度学习模型。为了在计算资源受限的环境下实现高效的目标检测,使用轻量级骨架是至关重要的。在这方面,MobileNetV3是一个出色的选择,它具有较少的参数和计算复杂度,同时保持了较高的准确性和速度。 MobileNetV3是Google提出的一种

    2024年03月16日
    浏览(81)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包