前言:
前面我们讲了一下策略评估的原理,以及例子.
强化学习核心是找到最优的策略,这里
重点讲解两个知识点:
策略改进
策略迭代与值迭代
最后以下面环境E 为例,给出Python 代码
。
目录:
1: 策略改进
2: 策略迭代与值迭代
3: 策略迭代代码实现 Python 代码
一 策略改进
理想的策略应该能够最大化累积奖赏:
最优策略对应的值函数称为最优值函数
状态值函数(Bellman 等式):
动作求和
......16.9
......16.9
状态-动作值函数
状态值函数(Bellman 等式): 动作求和
...16.10
...16.10
由于最优值的累计奖赏已经最大,可以对前面的Bellman 等式做改动,
即使对动作求和 改为取最优
最优
....16.13
...16.13
则....16.14 带入16.10
...16.10
...16.10
最优Bellman 等式揭示了非最优策略的改进方式:
将策略选择的动作改变为当前的最优动作。这样改进能使策略更好
策略为,改变动作的条件为:
带入16.10,可以得到递推不等式
16.16
二 策略迭代与值迭代
可以看出:策略迭代法在每次改进策略后都要对策略进行重新评估,因此比较耗时。
由公式16.16 策略改进 与值函数的改进是一致的
由公式16.13可得
于是可得值迭代(value iteration)算法.
三 策略迭代代码实现
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 1 19:34:00 2023
@author: cxf
"""
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 30 15:38:17 2023
@author: chengxf2
"""
import numpy as np
from enum import Enum
import copy
class State(Enum):
#状态空间X
shortWater =1 #缺水
health = 2 #健康
overflow = 3 #凋亡
apoptosis = 4 #溢水
class Action(Enum):
#动作空间A
water = 1 #浇水
noWater = 2 #不浇水
class Env():
def __init__(self):
#状态空间
self.X = [State.shortWater, State.health,State.overflow, State.apoptosis]
#动作空间
self.A = [Action.water,Action.noWater]
#从状态x出发,执行动作a,转移到新的状态x',得到的奖赏 r为已知道
self.Q ={}
self.Q[State.shortWater] = [[Action.water,0.5, State.shortWater,-1],
[Action.water,0.5, State.health,1],
[Action.noWater,0.4, State.shortWater,-1],
[Action.noWater,0.6, State.overflow,-100]]
self.Q[State.health] = [[Action.water,0.6, State.health,1],
[Action.water,0.4, State.overflow,-1],
[Action.noWater,0.6, State.shortWater,-1],
[Action.noWater,0.4, State.health,1]]
self.Q[State.overflow] = [[Action.water,0.6, State.overflow,-1],
[Action.water,0.4, State.apoptosis,-100],
[Action.noWater,0.6, State.health,1],
[Action.noWater,0.4, State.overflow,-1]]
self.Q[State.apoptosis] =[[Action.water,1, State.apoptosis,-100],
[Action.noWater,1, State.apoptosis,-100]]
self.curV ={} #前面的累积奖赏,t时刻的累积奖赏
self.V ={} #累积奖赏,t-1时刻的累积奖赏
for x in self.X:
self.V[x] =0
self.curV[x]=0
def GetX(self):
#获取状态空间
return self.X
def GetAction(self):
#获取动作空间
return self.A
def GetQTabel(self):
#获取状态转移概率
return self.Q
class LearningAgent():
def initStrategy(self):
#初始化策略
stragegy ={}
stragegy[State.shortWater] = Action.water
stragegy[State.health] = Action.water
stragegy[State.overflow] = Action.water
stragegy[State.apoptosis] = Action.water
self.stragegy = stragegy
def __init__(self):
env = Env()
self.X = env.GetX()
self.A = env.GetAction()
self.QTabel = env.GetQTabel()
self.curV ={} #前面的累积奖赏
self.V ={} #累积奖赏
for x in self.X:
self.V[x] =0
self.curV[x]=0
def evaluation(self,T):
#策略评估
for t in range(1,T):
#当前策略下面的累积奖赏
for state in self.X: #状态空间
reward = 0.0
action = self.stragegy[state]
QTabel= self.QTabel[state]
for Q in QTabel:
if action == Q[0]:#在状态x 下面执行了动作a,转移到了新的状态,得到的r
newstate = Q[2]
p_a_ss = Q[1]
r_a_ss = Q[-1]
#print("\n p_a_ss",p_a_ss, "\t r_a_ss ",r_a_ss)
reward += p_a_ss*((1.0/t)*r_a_ss + (1.0-1/t)*self.V[newstate])
self.curV[state] = reward
if (T+1)== t:
break
else:
self.V = self.curV
def improve(self,T):
#策略改进
stragegy ={}
for state in self.X:
QTabel= self.QTabel[state]
max_reward = -float('inf')
#计算每种Q(state, action)
for action in self.A:
reward = 0.0
for Q in QTabel:
if action == Q[0]:#在状态x 下面执行了动作a,转移到了新的状态,得到的r
newstate = Q[2]
p_a_ss = Q[1]
r_a_ss = Q[-1]
#print("\n p_a_ss",p_a_ss, "\t r_a_ss ",r_a_ss)
reward += p_a_ss*((1.0/T)*r_a_ss + (1.0-1/T)*self.V[newstate])
if reward> max_reward:
max_reward = reward
stragegy[state] = action
#print("\n state ",state, "\t action ",action, "\t reward %4.2f"%reward)
return stragegy
def compare(self,dict1, dict2):
#策略比较
for key in dict1:
if dict1[key] != dict2.get(key):
return False
return True
def learn(self,T):
#随机初始化策略
self.initStrategy()
n = 0
while True:
self.evaluation(T-1) #策略评估
n = n+1
print("\n 迭代次数 %d"%n ,State.shortWater.name, "\t 奖赏: %4.2f "%self.V[State.shortWater],
State.health.name, "\t 奖赏: %4.2f "%self.V[State.health],
State.overflow.name, "\t 奖赏: %4.2f "%self.V[State.overflow],
State.apoptosis.name, "\t 奖赏: %4.2f "%self.V[State.apoptosis],)
strategyN =self.improve(T) #策略改进
#print("\n ---cur---\n",self.stragegy,"\n ---new-- \n ",strategyN )
if self.compare(self.stragegy,strategyN):
print("\n ----- 最终策略 -----\n ")
for state in self.X:
print("\n state ",state, "\t action: ",self.stragegy[state])
break
else:
for state in self.X:
self.stragegy[state] = strategyN[state]
if __name__ == "__main__":
T =10
agent = LearningAgent()
agent.learn(T)
参考:
机器学习.周志华《16 强化学习 》_51CTO博客_机器学习 周志华文章来源:https://www.toymoban.com/news/detail-740973.html
CSDN文章来源地址https://www.toymoban.com/news/detail-740973.html
到了这里,关于[PyTorch][chapter 58][强化学习-2-有模型学习2]的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!