python调用SCIP求解TSP(callback方式实现消除子环路subtour)

这篇具有很好参考价值的文章主要介绍了python调用SCIP求解TSP(callback方式实现消除子环路subtour)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 TSP数学模型

python调用SCIP求解TSP(callback方式实现消除子环路subtour),运筹优化,python,算法

2 callback消除子环路(subtour)

  • callback解决方案

The constraints (3) exclude subtours by imposing that for any proper subset S of the vertex set V such that |S| ≥ 2 a solution cannot encompass a cycle within S. However, as there is an exponential number of subsets of V , it is impractical to specify all of these constraints. A possible approach is to iteratively solve the problem, starting without these constraints and after each solving round add constraints (3) violated by the current solution.

  • SCIP中的callback方式

一般商业求解器Gurobi或者CPLEX中直接提供的callback(回调函数)的方法,SCIP采用的是constraint handler的方式,使用起来没那么方便,需要自定义一个继承了约束处理的类Conshdlr,覆写conscheck、consenfolp、conslock方法。看源码其实就是callback的一种实现形式而已,其运行日志显示也是迭代运行求解的。

3 python调用SCIP求解TSP

  • 完整python代码如下:
import numpy as np
import networkx as nx
import itertools
from pyscipopt import Model, Conshdlr, quicksum, SCIP_RESULT
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 替换sans-serif字体
plt.rcParams['axes.unicode_minus'] = False  # 正常显示负号


# 继承约束处理的类
class TSPconshdlr(Conshdlr):
    def __init__(self, variables):
        self.variables = variables

    def find_subtours(self, solution = None):
        # find subtours in the graph induced by the edges {i,j} for which x[i,j] is positive
        # at the given solution; when solution is None, then the LP solution is used
        # 获取所有连接边
        edges = []
        x = self.variables
        for (i, j) in x:
            if self.model.getSolVal(solution, x[i, j]) > 1.e-6:
                edges.append((i, j))
        # 判断图是否有连接,如果返回的长度=1,则说明没有子连接
        G = nx.Graph()
        G.add_edges_from(edges)
        components = list(nx.connected_components(G))
        if len(components) == 1:
            return []
        else:
            return components

    # checks whether solution is feasible, ie, if there are no subtours;
    # since the checkpriority is < 0, we are only called if the integrality
    # constraint handler didn't find infeasibility, so solution is integral
    def conscheck(self, constraints, solution, check_integrality,
                  check_lp_rows, print_reason, completely, **results):
        """ calls feasibility check method of constraint handler """
        if self.find_subtours(solution):
            return {"result": SCIP_RESULT.INFEASIBLE}
        else:
            return {"result": SCIP_RESULT.FEASIBLE}

    def consenfolp(self, constraints, n_useful_conss, sol_infeasible):
        """ calls enforcing method of constraint handler for LP solution for all constraints added """
        subtours = self.find_subtours()
        if subtours:
            x = self.variables
            # 添加子环消除路约束
            for subset in subtours:
                self.model.addCons(quicksum(x[i, j] for(i, j) in pairs(sorted(subset))) <= len(subset) - 1)
                print("cut: len(%s) <= %s" % (subset, len(subset) - 1))
            return {"result": SCIP_RESULT.CONSADDED}
        else:
            return {"result": SCIP_RESULT.FEASIBLE}

    def conslock(self, constraint, locktype, nlockspos, nlocksneg):
    	# 可以直接跳过
        pass

    # def conslock(self, constraint, locktype, nlockspos, nlocksneg):
    #     x = self.variables
    #     for (i,j) in x:
    #         self.model.addVarLocks(x[i,j], nlocksneg, nlockspos)

def pairs(nodes):
    return itertools.combinations(nodes, 2)

def get_route_data(edges):
    # 解析获取路径,构成一个环
    routes = []
    for i in range(len(edges)):
        if i == 0:
            routes.append(edges[0])
            edges.pop(0)
        else:
            pre = routes[-1]
            connected_node = pre[1] 
            for j in range(len(edges)):
                aft = edges[j]
                if connected_node in aft:
                    if aft[0] == connected_node:
                        chosen_node = (aft[0], aft[1])
                    elif aft[1] == connected_node:
                        chosen_node = (aft[1], aft[0])
                    routes.append(chosen_node)
                    edges.pop(j)
                    break
        i = i+1
    return routes
    
def plot_pic(route, city_location):

    plt.figure()
    # 绘制散点
    x = np.array(city_location)[:, 0]  # 横坐标
    y = np.array(city_location)[:, 1]  # 纵坐标
    plt.scatter(x, y, color='r')
    # 绘制城市编号
    for i, txt in enumerate(range(1, len(city_location) + 1)):
        plt.annotate(txt, (x[i], y[i]))
    # 绘制方向
    x0 = x[route]
    y0 = y[route]
    for i in range(len(city_location) - 1):
        plt.quiver(x0[i], y0[i], x0[i + 1] - x0[i], y0[i + 1] - y0[i], color='b', width=0.005, angles='xy', scale=1,
                    scale_units='xy')
    plt.quiver(x0[-1], y0[-1], x0[0] - x0[-1], y0[0] - y0[-1], color='b', width=0.005, angles='xy', scale=1,
                scale_units='xy')
    plt.title('TSP')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.savefig('./TSP.png')
    plt.show()

def pre_test_data():
    # 城市节点的位置信息,一行代表一个城市的横坐标及纵坐标
    city_location = [[ 94,  99],
           [ 66,  67],
           [ 14,  78],
           [ 95,  56],
           [ 68,   9],
           [ 26,  20],
           [ 51,  67],
           [ 39,  39],
           [  5,  55],
           [ 12,  33],
           [ 55,  85],
           [ 98,  46],
           [ 36,  39],
           [ 65, 100],
           [ 57,  89],
           [ 88,  24],
           [ 53,  96],
           [ 91,  41],
           [ 32,  69],
           [ 38,  38],
           [ 38,  39],
           [ 85, 100],
           [  7,  37],
           [ 85,  96],
           [ 89,  48],
           [ 85,  35],
           [ 32,  29],
           [ 31,  25],
           [ 20,  17],
           [ 75,  21],
           [ 74,  29],
           [  6,  32],
           [ 20,  81],
           [ 62,   1],
           [ 11,  48],
           [  1,  69],
           [ 99,  70],
           [ 20,  27],
           [ 25,  42],
           [  6,  31],
           [ 78,  24],
           [ 42,  39],
           [ 83,  30],
           [ 94,  10],
           [ 90,  37],
           [ 76,  73],
           [  9,  56],
           [ 39,  33],
           [ 74,  15],
           [ 77,  14]]

    nodes = list(range(len(city_location)))  # 节点集合
    # 计算距离成本矩阵 distance, 直接使用欧式距离
    distance = {}
    for (i, j) in pairs(nodes):
        distance[(i, j)] = ((city_location[i][0]-city_location[j][0])**2+(city_location[i][1]-city_location[j][1])**2)**0.5
    
    return nodes, city_location, distance

def solve_tsp(nodes, distance):
    # 构建模型
    model = Model("TSP")

    # 定义变量: 为了减少决策变量,节点i和j是否连接(无方向),即(1,2)代表1和2连接,不代表1->2
    x = {}
    for (i, j) in pairs(nodes):
        x[i, j] = model.addVar(vtype="B", name="x(%s,%s)" % (i, j))

    # 添加流约束
    for i in nodes:
        model.addCons(quicksum(x[j, i] for j in nodes if j < i) +
                      quicksum(x[i, j] for j in nodes if j > i) == 2, "Degree(%s)" % i)

    # 去除子环路
    conshdlr = TSPconshdlr(x)
    model.includeConshdlr(conshdlr, "TSP", "TSP subtour eliminator", chckpriority=-10, needscons=False)
    model.setBoolParam("misc/allowstrongdualreds", False)

    # 设置目标
    model.setObjective(quicksum(distance[i, j] * x[i, j] for (i, j) in pairs(nodes)), "minimize")

    # 求解
    model.hideOutput()
    model.optimize()

    # 获取结果
    if model.getStatus() != 'infeasible':
        edges = []
        for (i, j) in x:
            if model.getVal(x[i, j]) > 1.e-6:
                edges.append((i, j))
        routes = get_route_data(edges)

        print("Optimal routes:", routes)
        print("Optimal cost:", model.getObjVal())
    else:
        print('model is infeasible')

    return routes


if __name__ == "__main__":
    ############## 准备测试数据 ##############
    nodes, city_location, distance = pre_test_data()

    ############## 建模 & 求解 ##############
    route = solve_tsp(nodes, distance)

    ############## 绘图结果 ##############
    plot_pic(route, city_location)

4 求解结果

4.1 log日志

cut: len({0, 21, 23}) <= 2
cut: len({1, 2, 3, 4, 6, 7, 8, 11, 12, 15, 17, 18, 19, 20, 24, 25, 26, 27, 32, 33, 34, 35, 36, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49}) <= 32
cut: len({37, 28, 5}) <= 2
cut: len({9, 31, 22, 39}) <= 3
cut: len({16, 10, 13, 14}) <= 3
cut: len({40, 29, 30}) <= 2
cut: len({0, 1, 36, 6, 10, 45, 13, 14, 16, 21, 23}) <= 10
cut: len({32, 2, 18}) <= 2
cut: len({24, 11, 3}) <= 2
cut: len({48, 33, 4}) <= 2
cut: len({34, 37, 5, 39, 7, 9, 41, 38, 12, 47, 19, 20, 22, 26, 27, 28, 31}) <= 16
cut: len({8, 35, 46}) <= 2
cut: len({40, 42, 43, 15, 49, 29, 30}) <= 6
cut: len({17, 44, 25}) <= 2
cut: len({0, 13, 21, 23}) <= 3
cut: len({1, 2, 3, 4, 5, 6, 8, 9, 11, 15, 17, 18, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 42, 43, 44, 45, 46, 47, 48, 49}) <= 34
cut: len({7, 41, 12, 19, 20}) <= 4
cut: len({16, 10, 14}) <= 2
cut: len({31, 22, 39}) <= 2
cut: len({0, 1, 36, 6, 10, 45, 13, 14, 16, 18, 21, 23}) <= 11
cut: len({32, 2, 35}) <= 2
cut: len({24, 11, 3, 17}) <= 3
cut: len({33, 4, 40, 42, 43, 44, 15, 48, 49, 25, 29, 30}) <= 11
cut: len({37, 5, 39, 7, 9, 41, 38, 12, 47, 19, 20, 22, 26, 27, 28, 31}) <= 15
cut: len({8, 34, 46}) <= 2
cut: len({0, 10, 13, 14, 16, 21, 23}) <= 6
cut: len({1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 17, 18, 19, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49}) <= 42
cut: len({0, 1, 36, 10, 45, 13, 14, 16, 21, 23}) <= 9
cut: len({2, 5, 6, 7, 8, 9, 12, 18, 19, 20, 22, 26, 27, 28, 31, 32, 34, 35, 37, 38, 39, 41, 46, 47}) <= 23
cut: len({3, 11, 44, 17, 24}) <= 4
cut: len({33, 4, 40, 42, 43, 15, 48, 49, 25, 29, 30}) <= 10
cut: len({0, 1, 6, 10, 13, 45, 14, 16, 21, 23}) <= 9
cut: len({2, 5, 7, 8, 9, 12, 18, 19, 20, 22, 26, 27, 28, 31, 32, 34, 35, 37, 38, 39, 41, 46, 47}) <= 22
cut: len({11, 3, 36}) <= 2
cut: len({33, 4, 40, 42, 43, 15, 48, 49, 29, 30}) <= 9
cut: len({24, 17, 44, 25}) <= 3
Optimal routes: [(0, 21), (21, 23), (23, 13), (13, 16), (16, 14), (14, 10), (10, 45), (45, 1), (1, 6), (6, 18), (18, 32), (32, 2), (2, 35), (35, 8), (8, 46), (46, 34), (34, 22), (22, 31), (31, 39), (39, 9), (9, 37), (37, 28), (28, 5), (5, 27), (27, 26), (26, 38), (38, 12), (12, 19), (19, 20), (20, 7), (7, 41), (41, 47), (47, 33), (33, 4), (4, 48), (48, 49), (49, 43), (43, 15), (15, 40), (40, 29), (29, 30), (30, 42), (42, 25), (25, 44), (44, 17), (17, 24), (24, 11), (11, 3), (3, 36), (36, 0)]
Optimal cost: 508.0830635384923

4.2 绘图结果

python调用SCIP求解TSP(callback方式实现消除子环路subtour),运筹优化,python,算法
参考:PySCIPOPT接口文档文章来源地址https://www.toymoban.com/news/detail-741906.html

到了这里,关于python调用SCIP求解TSP(callback方式实现消除子环路subtour)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【LKH算法体验】Python调用LKH算法求TSP问题

    Keld Helsgaun 是丹麦 罗斯基勒大学计算机科学专业的名誉副教授。 他于 1973 年在 哥本哈根大学获得DIKU 计算机科学硕士学位。他自 1975 年以来一直在罗斯基勒大学工作。他的研究兴趣包括人工智能(问题解决和启发式)和组合优化。 LKH 是Lin-Kernighan解决旅行商(TSP)问题启发式

    2024年02月05日
    浏览(46)
  • 运筹系列82:使用动态规划求解TSP问题

    定义 c ( s , k ) c(s,k) c ( s , k ) 为当前在 k k k ,待访问点的集合 s s s ,最后返回城市0的最短路径,那么Bellman方程为: c ( s , k ) = min ⁡ i ∈ s { c ( s − { i } , i ) + d i , k } c(s,k)=min_{i in s}{c(s-{i},i)+d_{i,k}} c ( s , k ) = min i ∈ s ​ { c ( s − { i } , i ) + d i , k ​ } 为了使用方便,这里

    2024年02月06日
    浏览(44)
  • 人工智能导论——遗传算法求解TSP问题实验

    一、实验目的: 熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传算法求解组合优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。 二、实验原理: 旅行商问题,即TSP问题(Traveling Salesman Problem)是数学领域中著名问题之一。假设有一个旅行商人要拜

    2023年04月13日
    浏览(46)
  • Hopfield神经网络求解旅行商(TSP)问题matlab代码

            1.网络结构         连续Hopfield神经网络(Continuous Hopfield Neural Network,CHNN)的拓扑结构和离散Hopfield神经网络的结构类似,如图11-1所示。连续Hopfield网络和离散Hopfield 网络的不同点在于其传递函数不是阶跃函数,而是连续函数。         与离散型Hopfield神经网络不

    2024年02月14日
    浏览(43)
  • 人工智能原理实验4(1)——遗传算法、蚁群算法求解TSP问题

    TSP问题是组合数学中一个古老而又困难的问题,也是一个典型的组合优化问题,现已归入NP完备问题类。NP问题用穷举法不能在有效时间内求解,所以只能使用启发式搜索。遗传算法是求解此类问题比较实用、有效的方法之一。下面给出30个城市的位置信息: 应用遗传算法和蚁

    2024年01月24日
    浏览(59)
  • 97基于matlab的改进的带记忆的模拟退火算法求解TSP问题

    基于matlab的改进的带记忆的模拟退火算法求解TSP问题,采用多普勒型降温曲线描述迭代过程,在传统算法的基础上增加记忆功能,可测试中国31/64/144以及att48城市的数据,也可自行输入数据进行测试,测试结果基本达到当前最优水平。duoci.m为主文件。数据可更换自己的,程序

    2024年02月05日
    浏览(53)
  • 算法设计与分析实验二:动态规划法求解TSP问题和01背包问题

    【实验内容】 (1)tsp问题:利用动态规划算法编程求解TSP问题,并进行时间复杂性分析。 输入:n个城市,权值,任选一个城市出发; 输出:以表格形式输出结果,并给出向量解和最短路径长度。 (2)01背包问题:利用动态规划算法编程求解0-1背包问题,并进行时间复杂性分

    2024年02月03日
    浏览(58)
  • 软件工具 | Python调用运筹优化求解器(一):以CVRP&VRPTW为例

    欢迎关注个人微信公众号:Python助力交通 优化求解器是解决复杂工程问题不可或缺的工具,可以帮助我们验证模型的正确性、理解决策变量的耦合关系、获取最优决策方案(合适规模条件下)。小编搜罗了网上关于各类常见(其实并不常见)的优化求解器介绍的帖子: 优化

    2024年02月10日
    浏览(66)
  • 特征筛选之特征递归消除法及Python实现

            特征递归消除法(Feature Recursive Elimination,简称RFE)是一种特征选择的算法,它通过反复训练模型,并剔除其中的弱特征,直到达到所需的特征数量。 该算法的步骤如下: 首先,将所有的特征都输入模型,得到模型的性能评价指标(比如准确率、F1得分等)。 然

    2024年02月13日
    浏览(40)
  • 【运筹优化】带时间窗约束的车辆路径规划问题(VRPTW)详解 + Python 调用 Gurobi 建模求解

    车辆路径规划问题(Vehicle Routing Problem,VRP)一般指的是:对一系列发货点和收货点,组织调用一定的车辆,安排适当的行车路线,使车辆有序地通过它们,在满足指定的约束条件下(例如:货物的需求量与发货量,交发货时间,车辆容量限制,行驶里程限制,行驶时间限制等)

    2024年02月02日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包