线性代数 第五章 特征值与特征向量

这篇具有很好参考价值的文章主要介绍了线性代数 第五章 特征值与特征向量。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、特征值定义

二、特征值求法

  • 定义法;
  • 相似。

三、特征向量求法

  • 定义法;
  • 基础解系法;
  • 相似。

四、特征值性质

  1. 不同特征值的特征向量线性无关
  2. k重特征值至多有k个线性无关的特征向量

五、相似的定义

若,则A和B相似。文章来源地址https://www.toymoban.com/news/detail-742139.html

六、相似的性质(必要条件)

七、可对角化

7.1 充要条件
  • A有n个线性无关的特征向量
  • 如果λ是k重特征值,那么λ必有k个线性无关的特征向量
  • 为重特征值
7.2 充分条件
  • A有n个不同的特征值
  • A是实对称矩阵

八、实对称矩阵隐含的信息

  • 必与对角矩阵相似
  • 可用正交矩阵对角化,且对角阵上的元素即为特征值
  • 不同特征值的特征向量必正交
  • 特征值必是实数,特征向量必是实向量
  • k重特征值必有k个线性无关的特征向量()
  • n阶实对称矩阵A有n个特征值的话(含重根),若r(A)<n,则有n-r(A)个零特征值
  • 秩等于非零特征值的个数
线性代数 第五章 特征值与特征向量,考研线性代数,线性代数 线性代数 第五章 特征值与特征向量,考研线性代数,线性代数
线性代数 第五章 特征值与特征向量,考研线性代数,线性代数 线性代数 第五章 特征值与特征向量,考研线性代数,线性代数

到了这里,关于线性代数 第五章 特征值与特征向量的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数 --- 特征值与特征向量(下)

    Eigen Values Eigen Vectors Part III:如何求解特征向量与特征值 对于一般矩阵A,如何找到他的特征值与特征向量? Step I: Find λ first! 首先,我们有方程: 但这里有两个未知数,因此我们把上面的方程改写一下:         这个齐次方程的解就是矩阵(A-I)的零空间,抛开平凡解全0向

    2024年03月14日
    浏览(50)
  • 线性代数基础 | 特征值和特征向量

    一、特征值和特征向量的定义 A. 特征值的定义和性质 特征值(eigenvalue)是线性代数中一个重要的概念,用于描述线性变换对于某个向量的伸缩效应。在本文中,我们将深入讨论特征值的定义和性质。 首先,我们考虑一个线性变换(或者说一个方阵)A。对于一个非零向量v,

    2024年02月16日
    浏览(43)
  • 线性代数基础【5】特征值和特征向量

    一、特征值和特征向量的理论背景 在一个多项式中,未知数的个数为任意多个,且每一项次数都是2的多项式称为二次型,二次型分为两种类型:即非标准二次型及标准二次型 注意: ①二次型X^T AX为非标准二次型的充分必要条件是A^T=A 但A为非对角矩阵;二次型 X^TAX为标准二次型的充

    2024年01月20日
    浏览(50)
  • 线性代数——特征值与特征向量的性质

    (1)设A为方阵,则A与 A T A^{T} A T 有相同的特征值。 此处用到了两个关键性质,一:单位阵的转置为其本身,二:转置并不改变行列式的值。 (2): 设n阶方阵A=( a i j a_{ij} a ij ​ )的n个特征值为 λ 1 lambda_{1} λ 1 ​ , λ 2 lambda_{2} λ 2 ​ ,… λ n lambda_{n} λ n ​ ,则 λ 1 + λ

    2024年02月04日
    浏览(46)
  • 线性代数学习之特征值与特征向量

    在上一次线性代数学习之行列式学习了行列式相关的一些概念,其中也多次提到学好行列式是为了学习“特征值和特征向量”的基础,所以此次就正式进入这块内容的学习,也是线性代数中非常重要的概念,因为它又是线性代数其它重要概念的基石比如矩阵的相似性等等,当

    2024年02月11日
    浏览(56)
  • 线性代数|证明:矩阵不同特征值对应的特征向量线性无关

    定理 1 设 λ 1 , λ 2 , ⋯   , λ m lambda_1,lambda_2,cdots,lambda_m λ 1 ​ , λ 2 ​ , ⋯ , λ m ​ 是方阵 A boldsymbol{A} A 的 m m m 个特征值, p 1 , p 2 , ⋯   , p m boldsymbol{p}_1,boldsymbol{p}_2,cdots,boldsymbol{p}_m p 1 ​ , p 2 ​ , ⋯ , p m ​ 依次是与之对应的特征向量,如果 λ 1 , λ 2 , ⋯   , λ

    2024年02月07日
    浏览(60)
  • 线性代数(8):特征值、特征向量和相似矩阵

            有矩阵 A 为 n 阶矩阵,Ax = λx ( λ 为一个实数,x为 n 维非零列向量 ),则称 λ 为方阵 A 的特征值, x 为特征向量; 1.2.1 公式         求特征值:使 | A - λE | = 0,其解的 λ 值即为矩阵 A 的特征值;         求特征向量: 使 ( A - λE )x = 0,设 x 为与 A 具有

    2024年02月11日
    浏览(51)
  • 线性代数(五) | 矩阵对角化 特征值 特征向量

    矩阵实际上是一种变换,是一种旋转伸缩变换(方阵) 不是方阵的话还有可能是一种升维和降维的变换 直观理解可以看系列超赞视频线性代数-哔哩哔哩_Bilibili 比如A= ( 1 2 2 1 ) begin{pmatrix}12\\\\21end{pmatrix} ( 1 2 ​ 2 1 ​ ) x= ( 1 2 ) begin{pmatrix}1\\\\2end{pmatrix} ( 1 2 ​ ) 我们给x左乘A实际

    2024年02月04日
    浏览(64)
  • 数值线性代数:Arnoldi求解特征值/特征向量

    线性方程组求解 、 最小二乘法 、 特征值/特征向量求解 是(数值)线性代数的主要研究内容。 在力学、气象学、电磁学、金融等学科中,许多问题最终都归结为特征值、特征向量的求解。 ARPACK 使用 IRAM ( Implicit Restarted Arnoldi Method )求解大规模系数矩阵的部分特征值与特征向量

    2024年01月18日
    浏览(51)
  • 线性代数中的特征值和特征向量

    现将下文需要运用到的一些概念进行解释说明以便读者更好理解 其中,我们要注意两点: (1)A是方阵(对于非方阵,是没有特征值的,但会有条件数)  (2)特征向量为非0列向量 我们再来看看两个相关定理  定理5.1说明了一个矩阵的几个特征向量线性无关 定义5.1的第一

    2024年02月01日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包