【ElasticSearch系列-05】SpringBoot整合elasticSearch

这篇具有很好参考价值的文章主要介绍了【ElasticSearch系列-05】SpringBoot整合elasticSearch。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

ElasticSearch系列整体栏目


内容 链接地址
【一】ElasticSearch下载和安装 https://zhenghuisheng.blog.csdn.net/article/details/129260827
【二】ElasticSearch概念和基本操作 https://blog.csdn.net/zhenghuishengq/article/details/134121631
【三】ElasticSearch的高级查询Query DSL https://blog.csdn.net/zhenghuishengq/article/details/134159587
【四】ElasticSearch的聚合查询操作 https://blog.csdn.net/zhenghuishengq/article/details/134159587
【五】SpringBoot整合elasticSearch https://blog.csdn.net/zhenghuishengq/article/details/134212200

一,SpringBoot整合ElasticSearch

前面几篇讲解了es的安装,dsl语法,聚合查询等,接下来这篇主要就是讲解通过java的方式来操作es,这里选择通过springboot的方式整合ElasticSearchSearch

在学习这个整合之前,可以查看对应的官网资料:https://www.elastic.co/guide/en/elasticsearch/client/java-api-client/7.17/connecting.html

1,需要的依赖以及版本

首先创建springboot项目,然后需要的依赖如下,我前面用的是7.7.0的版本,因此这里继续使用这个版本。其他的依赖根据个人需要选择

<properties>
    <java.version>8</java.version>
    <elasticsearch.version>7.7.0</elasticsearch.version>
</properties>
<dependencies>
	<dependency>
	    <groupId>org.elasticsearch.client</groupId>
	    <artifactId>elasticsearch-rest-high-level-client</artifactId>
	    <version>7.7.0</version>
	</dependency>
</dependencies>

2,创建config配置类并测试连接

随后创建一个config的配置类,用于连接上ElasticSearch,我这边是单机版,并没有集群

/**
 * 连接es的工具类
 */
@Configuration
public class ElasticSearchConfig { 
    public static final RequestOptions COMMON_OPTIONS;
    static {
        RequestOptions.Builder builder = RequestOptions.DEFAULT.toBuilder();
        COMMON_OPTIONS = builder.build();
    }
    @Bean
    public RestHighLevelClient esRestClient(){
        RestHighLevelClient client = new RestHighLevelClient(
                RestClient.builder(new HttpHost("xx.xx.xx.xx", 9200, "http")));
        return  client;
    }
}

在创建好了之后,可以直接在test类中进行测试,看能否连接成功

@RunWith(SpringRunner.class)
@SpringBootTest
public class StudyApplicationTests {
    @Resource
    private RestHighLevelClient client;

    @Test
    public void contextLoads() {
        System.out.println(restHighLevelClient);
    }
}

在运行之后,如果打印出了以下这句话,表示整合成功

org.elasticsearch.client.RestHighLevelClient@7d151a

3,增删改查测试

3.1,索引插入数据

首先先创建一个users的索引,并向里面插入一条数据。插入和更新都可以用这个方法

//创建一个user索引,并且插入一条数据
@Test
public void addData() throws IOException {
    //创建一个索引
    IndexRequest userIndex = new IndexRequest("users");
    User user = new User();
    user.setId(1);
    user.setUsername("Tom");
    user.setPassword("123456");
    user.setAge(18);
    user.setSex("女");
   //添加数据
   userIndex.source(JSON.toJSONString(user), XContentType.JSON);
   IndexResponse response = client.index(userIndex, ElasticSearchConfig.COMMON_OPTIONS);
	//响应数据
	System.out.println(response);
}

随后再在kibana中查询这个索引,可以看到这条数据是已经插入成功的,并且索引页创建成功

【ElasticSearch系列-05】SpringBoot整合elasticSearch,ElasticSearch,elasticsearch,spring boot,搜索引擎,大数据,Query DSL

3.2,根据id查询数据

查询id为1的数据,需要通过QueryBuild构造器查询

@Test
public void getById() throws IOException {
    SearchRequest request = new SearchRequest("users");
    SearchSourceBuilder builder = new SearchSourceBuilder();
    builder.query(QueryBuilders.matchQuery("id", "1"));
    request.source(builder);
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    System.out.println(response);
}

3.3,删除一条数据

删除刚刚创建的这条数据,这里直接设置id为1即可

@Test
public void deleteById() throws Exception{
    DeleteRequest request = new DeleteRequest("users");
    request.id("1");
    DeleteResponse delete = client.delete(request, ElasticSearchConfig.COMMON_OPTIONS);
    System.out.println(delete);
}

4,普通查询

这里主要是结合本人写的第三篇Query DSL的语法,通过java的方式写出依旧是先创建一个员工的信息索引,并且设置字段得我属性

PUT /employees
{
  "mappings": {
    "properties": {
      "name":{
        "type": "keyword"
      },
      "job":{
        "type": "keyword"
      },
      "salary":{
        "type": "integer"
      }
    }
  }
}

随后批量的插入10条数据

PUT /employees/_bulk
{ "index" : {  "_id" : "1" } }
{ "name" : "huisheng1","job":"python","salary":35000 }
{ "index" : {  "_id" : "2" } }
{ "name" : "huisheng2","job":"java","salary": 50000}
{ "index" : {  "_id" : "3" } }
{ "name" : "huisheng3","job":"python","salary":18000 }
{ "index" : {  "_id" : "4" } }
{ "name" : "huisheng4","job":"java","salary": 22000}
{ "index" : {  "_id" : "5" } }
{ "name" : "huisheng5","job":"javascript","salary":18000 }
{ "index" : {  "_id" : "6" } }
{ "name" : "huisheng6","job":"javascript","salary": 25000}
{ "index" : {  "_id" : "7" } }
{ "name" : "huisheng7","job":"c++","salary":20000 }
{ "index" : {  "_id" : "8" } }
{ "name" : "huisheng8","job":"c++","salary": 20000}
{ "index" : {  "_id" : "9" } }
{ "name" : "huisheng9","job":"java","salary":22000 }
{ "index" : {  "_id" : "10" } }
{ "name" : "huisheng10","job":"java","salary": 9000}

4.1,match条件查询

首先是分页查询,分页查询的queryDSL的语法如下

GET /employees/_search
{
  "query": {
    "match": {
      "job": "java"
    }
  }
}

java的语法如下

SearchRequest request = new SearchRequest("employees");
SearchSourceBuilder builder = new SearchSourceBuilder();
builder.query(QueryBuilders.matchQuery("job", "java"));
request.source(builder);
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
System.out.println(response);

短语匹配的语法如下

builder.query(QueryBuilders.matchPhraseQuery("job","java"));

多字段查询的语法如下

String fields[] = {"job","name"};
builder.query(QueryBuilders.multiMatchQuery("java",fields));

queryString的语法如下

builder.query(QueryBuilders.queryStringQuery("java"));

4.2,term精确匹配

GET /employees/_search
{
  "query": {
    "term": {
      "job": "java"
    }
  }
}

精确匹配通过java的方式如下

builder.query(QueryBuilders.termQuery("job","java"));

4.3,prefix前缀查询

PUT /employees/_search
{
    "query":{
        "prefix":{
            "name":{
                "value":"huisheng1"
            }
        }
    }
}

前缀查询的java方式如下

builder.query(QueryBuilders.prefixQuery("name","huisheng1"));

4.4,通配符查询wildcard

GET /employees/_search
{
  "query": {
    "wildcard": {
      "job": {
        "value": "*py*"
      }
    }
  }
}

通配符查询的java方式如下

builder.query(QueryBuilders.wildcardQuery("job","py"));

4.5,范围查询

POST /employees/_search
{
  "query": {
    "range": {
      "salary": {
        "gte": 25000
      }
    }
  }
}

范围查询的java方式如下

builder.query(QueryBuilders.rangeQuery("salary").gte(25000));

4.6,fuzzy模糊查询

GET /employees/_search
{
  "query": {
    "fuzzy": {
      "job": {
        "value": "javb",
        "fuzziness": 1    //表示允许错一个字
      }
    }
  }
}

模糊查询的java方式如下

builder.query(QueryBuilders.fuzzyQuery("job","javb").fuzziness(Fuzziness.ONE));

4.7,highlight高亮查询

GET /employees/_search
{
  "query": {
    "term": {
      "job": {
        "value": "java"
      }
    }
  },
  "highlight": {
    "fields": {
      "*":{}
    }
  }
}

高亮查询的java方式如下

builder.query(QueryBuilders.termQuery("job","java"));
HighlightBuilder highlightBuilder = new HighlightBuilder();
highlightBuilder.field("job");
builder.highlighter(highlightBuilder);

5,聚合查询

5.1,aggs聚合查询

先通过job进行分组查询,再拿到结果后再进行stats查询,求最大值,最小值,平均值等

POST /employees/_search
{
  "size": 0,
  "aggs": {
    "name": {
      "terms": {
        "field": "job"
      },
      "aggs": {
        "stats_salary": {
          "stats": {
            "field": "salary"
          }
        }
      }
    }
  }
}

其java代码如下,需要注意的点就是,如果存在二级聚合,那么需要调用这个 subAggregation 方法,如果只需要聚合的结果而不需要查询的结果,可以直接在SearchSourceBuilder的实例设置为0即可。

@Test
public void toAgg() throws  Exception{
    //创建检索请求
    SearchRequest searchRequest = new SearchRequest();
    //指定索引
    searchRequest.indices("employees");
    //构建检索条件
    SearchSourceBuilder builder = new SearchSourceBuilder();
    //构建聚合条件
    TermsAggregationBuilder aggregationBuilder = AggregationBuilders.terms("jobData").field("job");
        aggregationBuilder.subAggregation(AggregationBuilders.stats("salaryData").field("salary"));
	//将聚合条件加入到检索条件中
	builder.aggregation(aggregationBuilder);
	//只要聚合的结果,不需要查询的结果
	builder.size(0);
	searchRequest.source(builder);
	//执行检索
	SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
    System.out.println("检索结果:" + searchResponse);
}

打印的结果如下,和预期要打印的结果是一致的

{"took":4,"timed_out":false,"_shards":{"total":1,"successful":1,"skipped":0,"failed":0},"hits":{"total":{"value":10,"relation":"eq"},"max_score":null,"hits":[]},"aggregations":{"sterms#jobData":{"doc_count_error_upper_bound":0,"sum_other_doc_count":0,"buckets":[{"key":"java","doc_count":4,"stats#salaryData":{"count":4,"min":9000.0,"max":50000.0,"avg":25750.0,"sum":103000.0}},{"key":"c++","doc_count":2,"stats#salaryData":{"count":2,"min":20000.0,"max":20000.0,"avg":20000.0,"sum":40000.0}},{"key":"javascript","doc_count":2,"stats#salaryData":{"count":2,"min":18000.0,"max":25000.0,"avg":21500.0,"sum":43000.0}},{"key":"python","doc_count":2,"stats#salaryData":{"count":2,"min":18000.0,"max":35000.0,"avg":26500.0,"sum":53000.0}}]}}}

除了上面的state求全部的最大值,最小值等,还可以分别的求最大值,最小值,平均值,个数等,求平均值的的示例如下,需要使用到这个 AvgAggregationBuilder 构造器

AvgAggregationBuilder avgAggregationBuilder = AggregationBuilders.avg("salaryData").field("salary");
//将聚合条件加入到检索条件中
builder.aggregation(avgAggregationBuilder);

求最大值的示例如下,需要使用到这个 MaxAggregationBuilder 构造器

MaxAggregationBuilder maxAggregationBuilder = AggregationBuilders.max("maxData").field("salary");
//将聚合条件加入到检索条件中
 builder.aggregation(maxAggregationBuilder);

求最小值的示例如下,需要使用到这个 MinAggregationBuilder 构造器

MinAggregationBuilder minAggregationBuilder = AggregationBuilders.min("minData").field("salary");
//将聚合条件加入到检索条件中
builder.aggregation(minAggregationBuilder);

求总个数的示例如下,需要使用到这个 ValueCountAggregationBuilder 构造器

ValueCountAggregationBuilder countBuilder = AggregationBuilders.count("countData").field("salary");
//将聚合条件加入到检索条件中
builder.aggregation(countBuilder);

5.2,获取最终结果

上面在查询之后,会获取 SearchResponse 的对象,这里面就值执行查询后返回的结果

SearchResponse searchResponse

随后可以直接过滤结果,通过for循环去遍历这个 getHits

SearchHits hits = searchResponse.getHits();
SearchHit[] searchHits = hits.getHits();
for (SearchHit searchHit : searchHits) {
    String sourceAsString = searchHit.getSourceAsString();
    Employees employees = JSON.parseObject(sourceAsString, Employees.class);
    System.out.println(employees);

}

或者直接获取聚合操作结果的值文章来源地址https://www.toymoban.com/news/detail-742377.html

//获取jobData聚合。还有Avg、Max、Min等
Terms maxData = aggregations.get("jobData");
for (Terms.Bucket bucket : maxData.getBuckets()) {
	String keyAsString = bucket.getKeyAsString();
	System.out.println("job职业:" + keyAsString + " 数量==> " + bucket.getDocCount());
}

到了这里,关于【ElasticSearch系列-05】SpringBoot整合elasticSearch的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ElasticSearch系列 - SpringBoot整合ES:组合多个查询条件 bool 查询

    01. ElasticSearch 布尔查询是什么? 在实际应用中,我们很有可能会查询多个值或字段。 一个 bool 查询由三部分组成: must:所有的语句都必须(must) 匹配,与 AND 等价。 must_not:所有的语句都不能(must not)匹配,与 NOT 等价。 should:至少有一个语句要匹配,与 OR 等价。 02.

    2023年04月08日
    浏览(74)
  • ElasticSearch系列 - SpringBoot整合ES:实现搜索结果排序 sort

    00. 数据准备 01. Elasticsearch 默认的排序方式是什么? ElasticSearch 默认的排序方式是相关性排序。相关性排序是根据查询条件与文档的匹配程度来计算每个文档的相关性得分,然后按照得分从高到低进行排序。相关性排序是 ElasticSearch 中最常用的排序方式,因为它可以根据查询

    2024年02月02日
    浏览(54)
  • ElasticSearch系列 - SpringBoot整合ES:短语匹配查询 match_phrase

    1. ElasticSearch match_phrase查询是什么?它与match查询有什么区别? match_phrase查询是一种用于匹配短语的查询方式,可以用于精确匹配多个单词组成的短语。它会将查询字符串分解成单词,然后按照顺序匹配文档中的单词,只有当文档中的单词顺序与查询字符串中的单词顺序完全

    2024年02月12日
    浏览(52)
  • ElasticSearch系列 - SpringBoot整合ES:映射中定义字段的数据类型及属性

    ElasticSearch - SpringBoot整合ES:映射定义字段的数据类型及属性 01. ElasticSearch 搜索结果的准确性和召回率是什么? 在Elasticsearch中,搜索结果的准确性和召回率是非常重要的指标,它们反映了搜索引擎的性能和效果。以下是这两个指标的定义和解释: 准确性:搜索结果的准确性

    2024年02月08日
    浏览(47)
  • ElasticSearch系列 - SpringBoot整合ES:多字段查询 multi_match

    1. 什么是 ElasticSearch 的 multi_match 查询? 有时用户需要在多个字段中查询,除了使用布尔查询封装多个match查询之外,可替代的方案是使用multi_match。可以在multi_match的query子句中组织数据匹配规则,并在fields子句中指定需要搜索的字段列表。 以下是一个示例multi-match查询

    2023年04月21日
    浏览(68)
  • ElasticSearch系列 - SpringBoot整合ES:restHighLevelClient.count(countRequest, RequestOptions.DEFAULT)

    restHighLevelClient.count(countRequest, RequestOptions.DEFAULT) 是 Elasticsearch Java High Level REST Client 中用于执行计数请求的方法。 具体来说,它接受两个参数: countRequest:一个 CountRequest 对象,表示计数请求的参数,包括要计数的索引、查询条件等。 RequestOptions.DEFAULT:一个 RequestOptions 对象

    2024年02月08日
    浏览(59)
  • ElasticSearch系列 - SpringBoot整合ES:查询字段不为空的文档 exists

    1. ElasticSearch exists 查询是什么 在某些场景下,我们希望找到某个字段不为空的文档,则可以用exists搜索。字段不为空的条件有: 值存在且不是 null; 值不是空数组; 值是数组,但不是 [null] 例如,查询在字段中至少有一个非空值的文档: 这些文档都将匹配上面的查询: ①

    2024年02月06日
    浏览(74)
  • ElasticSearch系列 - SpringBoot整合ES:指定搜索结果返回的字段_source

    Elasticsearch的搜索结果可以通过以下参数进行控制: from:指定搜索结果的起始位置,默认为0。 size:指定返回的文档数量,默认为10。 sort:指定搜索结果的排序方式,可以按照字段升序或降序排列。 query:指定搜索的查询条件,可以使用各种查询语句进行搜索。 filter:指定

    2024年02月04日
    浏览(52)
  • ElasticSearch系列 - SpringBoot整合ES:查询条件 query 和过滤条件 filter 的区别

    01. Elasticsearch 查询条件和过滤条件的区别? Elasticsearch中的查询条件和过滤条件都是用于搜索和过滤文档的条件,但它们之间有一些区别。 查询条件是用于计算文档相关度得分的条件,它会将所有符合条件的文档按照相关度得分从高到低排序,并返回前N个文档。查询条件可以

    2024年02月14日
    浏览(60)
  • ElasticSearch系列 - SpringBoot整合ES:实现分页搜索 from+size、search after、scroll

    01. 数据准备 ElasticSearch 向 my_index 索引中索引了 12 条文档: 02. ElasticSearch 如何查询所有文档? ElasticSearch 查询所有文档 根据查询结果可以看出,集群中总共有12个文档,hits.total.value=12, 但是在 hits 数组中只有 10 个文档。如何才能看到其他的文档? 03. ElasticSearch 如何指定搜

    2023年04月08日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包