头歌(educoder)机器学习 --- k-means

这篇具有很好参考价值的文章主要介绍了头歌(educoder)机器学习 --- k-means。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

第一关:距离度量

#encoding=utf8    
import numpy as np
 
def distance(x,y,p=2):
    '''
    input:x(ndarray):第一个样本的坐标
          y(ndarray):第二个样本的坐标
          p(int):等于1时为曼哈顿距离,等于2时为欧氏距离
    output:distance(float):x到y的距离      
    ''' 
    #********* Begin *********#
    dis2 = np.sum(np.abs(x-y)**p)
    dis = np.power(dis2,1/p)
    return dis
    #********* End *********#

第二关:什么是质心

#encoding=utf8
import numpy as np
#计算样本间距离
def distance(x, y, p=2):
    '''
    input:x(ndarray):第一个样本的坐标
          y(ndarray):第二个样本的坐标
          p(int):等于1时为曼哈顿距离,等于2时为欧氏距离
    output:distance(float):x到y的距离      
    '''
    #********* Begin *********#    
    dis2 = np.sum(np.abs(x-y)**p)
    dis = np.power(dis2,1/p)
    return dis
    #********* End *********#
    
#计算质心
def cal_Cmass(data):
    '''
    input:data(ndarray):数据样本
    output:mass(ndarray):数据样本质心
    '''
    #********* Begin *********#
    Cmass = np.mean(data,axis=0)
    #********* End *********#
    return Cmass
 
#计算每个样本到质心的距离,并按照从小到大的顺序排列
def sorted_list(data,Cmass):
    '''
    input:data(ndarray):数据样本
          Cmass(ndarray):数据样本质心
    output:dis_list(list):排好序的样本到质心距离
    '''
    #********* Begin *********#
    dis_list =[]
    for i in range(len(data)):
        dis_list.append(distance(Cmass,data[i][:]))
    dis_list = sorted(dis_list)
    #********* End *********#
    return dis_list

第三关:k-means算法流程

# encoding=utf8
import numpy as np
 
 
# 计算一个样本与数据集中所有样本的欧氏距离的平方
def euclidean_distance(one_sample, X):
    one_sample = one_sample.reshape(1, -1)
    distances = np.power(np.tile(one_sample, (X.shape[0], 1)) - X, 2).sum(axis=1)
    return distances
 
 
def cal_dis(old_centroids, centroids):
    dis = 0
    for i in range(old_centroids.shape[0]):
        dis += np.linalg.norm(old_centroids[i] - centroids[i], 2)
    return dis
 
 
class Kmeans():
    """Kmeans聚类算法.
    Parameters:
    -----------
    k: int
        聚类的数目.
    max_iterations: int
        最大迭代次数.
    varepsilon: float
        判断是否收敛, 如果上一次的所有k个聚类中心与本次的所有k个聚类中心的差都小于varepsilon,
        则说明算法已经收敛
    """
 
    def __init__(self, k=2, max_iterations=500, varepsilon=0.0001):
        self.k = k
        self.max_iterations = max_iterations
        self.varepsilon = varepsilon
        np.random.seed(1)
 
    # ********* Begin *********#
    # 从所有样本中随机选取self.k样本作为初始的聚类中心
    def init_random_centroids(self, X):
        m, n = X.shape
        center = np.zeros((self.k, n))
        for i in range(self.k):
            index = int(np.random.uniform(0, m))
            center[i] = X[index]
        return center
 
    # 返回距离该样本最近的一个中心索引[0, self.k)
    def _closest_centroid(self, sample, centroids):
        distances = euclidean_distance(sample, centroids)
        return np.argsort(distances)[0]
 
    # 将所有样本进行归类,归类规则就是将该样本归类到与其最近的中心
    def create_clusters(self, centroids, X):
        m, n = X.shape
        clusters = np.mat(np.zeros((m, 1)))
        for i in range(m):
            index = self._closest_centroid(X[i], centroids)
            clusters[i] = index
        return clusters
 
    # 对中心进行更新
    def update_centroids(self, clusters, X):
        centroids = np.zeros([self.k, X.shape[1]])
        for i in range(self.k):
            pointsInCluster = []
            for j in range(clusters.shape[0]):
                if clusters[j] == i:
                    pointsInCluster.append(X[j])
            centroids[i] = np.mean(pointsInCluster, axis=0)  # 对矩阵的行求均值
        return centroids
 
    # 将所有样本进行归类,其所在的类别的索引就是其类别标签
    def get_cluster_labels(self, clusters, X):
        return
 
    # 对整个数据集X进行Kmeans聚类,返回其聚类的标签
    def predict(self, X):
        # 从所有样本中随机选取self.k样本作为初始的聚类中心
        centroids = self.init_random_centroids(X)
        clusters = []
        iter = 0
        # 迭代,直到算法收敛(上一次的聚类中心和这一次的聚类中心几乎重合)或者达到最大迭代次数
        while iter < self.max_iterations:
            iter += 1
 
            # 将所有进行归类,归类规则就是将该样本归类到与其最近的中心
            clusters = self.create_clusters(centroids, X)
 
            # 计算新的聚类中心
            old_centroids = centroids[:]
            centroids = self.update_centroids(clusters, X)
            if cal_dis(old_centroids, centroids) < self.varepsilon:
                break
 
            # 如果聚类中心几乎没有变化,说明算法已经收敛,退出迭代
        return np.array(clusters).reshape([X.shape[0], ])
 
    # ********* End *********#

第四关:sklearn中的k-means

#encoding=utf8
from sklearn.cluster import KMeans
 
def kmeans_cluster(data):
    '''
    input:data(ndarray):样本数据
    output:result(ndarray):聚类结果
    '''
    #********* Begin *********#
    km = KMeans(n_clusters=3,random_state=888)
    result = km.fit_predict(data)
    #********* End *********# 
    return result

文章来源地址https://www.toymoban.com/news/detail-742489.html

到了这里,关于头歌(educoder)机器学习 --- k-means的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【机器学习】十大算法之一 “K-means”

      作者主页: 爱笑的男孩。的博客_CSDN博客-深度学习,活动,python领域博主 爱笑的男孩。擅长深度学习,活动,python,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域. https://blog.csdn.net/Code_and516?type=blog 个人简介:打工人。 持续分

    2024年02月10日
    浏览(35)
  • 机器学习——K-Means算法优化(一)代价函数

    在K-Means算法中,对K个质心的选择,容易陷入局部最小值,从而每次聚类得到不同的结果。 使用多次的随机初始化,并计算每一次建模得到的代价函数值,选取最小的代价函数值作为聚类结果,代价函数公式如下 J ( c ( 1 ) , … , c ( m ) , μ 1 , … , μ K ) = 1 m ∑ i = 1 m ∣ ∣ x (

    2024年02月02日
    浏览(48)
  • 机器学习第十一课--K-Means聚类

    K-Means算法是最经典的聚类算法,几乎所有的聚类分析场景,你都可以使用K-Means,而且在营销场景上,它就是\\\"King\\\",所以不管从事数据分析师甚至是AI工程师,不知道K-Means是”不可原谅“的一件事情。在面试中,面试官也经常问关于K-Means的问题。虽然算法简单,但也有一些需

    2024年02月07日
    浏览(27)
  • 传统机器学习(三)聚类算法K-means(一)

    K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛。K-Means基于欧式距离认为两个目标距离越近,相似度越大。 1.1.1 算法流程 (1)图a表达了初始的数据集, 假设k=2; (2)在图b中,随机选择两个k类的对应的类别质心,即图中的红色质

    2023年04月15日
    浏览(31)
  • 【机器学习】K-means聚类算法:原理、应用与优化

    一、引言 1、简述聚类分析的重要性及其在机器学习中的应用   聚类分析,作为机器学习领域中的一种无监督学习方法,在数据探索与知识发现过程中扮演着举足轻重的角色。它能够在没有先验知识或标签信息的情况下,通过挖掘数据中的内在结构和规律,将数据对象自动

    2024年04月13日
    浏览(36)
  • 吴恩达471机器学习入门课程3第1周——K-means

    实现 K-means 算法,并将其用于图像压缩。 您将从一个样本数据集开始,帮助您获得 K-means 算法的工作概述 然后,您将使用 K-means 算法进行图像压缩,将出现在图像中的颜色数量减少到仅包括那些在该图像中最常见的颜色。 K-means 算法是一种自动将相似数据点聚合在一起的方

    2024年02月11日
    浏览(30)
  • [机器学习]K-means算法详解:原理、优缺点、代码实现、变体及实际应用

    文章首发于若绾 [机器学习]K-means算法详解:原理、优缺点、代码实现、变体及实际应用,转载请注明出处。 K-means算法是一种非常流行的无监督学习方法,主要应用于聚类问题。本篇博客将详细介绍K-means算法的原理、优缺点及实际应用场景。 K-means算法的核心思想是将数据划分

    2024年02月08日
    浏览(28)
  • 机器学习之K-means聚类算法

    目录 K-means聚类算法 算法流程 优点 缺点 随机点聚类 人脸聚类 旋转物体聚类 K-means聚类算法是一种无监督的学习方法,通过对样本数据进行分组来发现数据内在的结构。K-means的基本思想是将n个实例分成k个簇,使得同一簇内数据相似度高而不同簇之间数据相似度低。 K-means的

    2024年02月11日
    浏览(33)
  • 机器学习之K-Means(k均值)算法

    K-Means算法又称K均值算法,属于聚类(clustering)算法的一种,是应用最广泛的聚类算法之一。所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇。聚类与分类最大的区别在于,聚类过程为无监督过程,

    2024年02月03日
    浏览(33)
  • 【人工智能】— 无监督学习、K-means聚类(K-means clustering)、K-means损失函数,目标函数

    无监督学习是指在没有标签的数据上进行学习,即没有监督信号的指导下进行模型训练。在无监督学习中,我们主要关注从无标签数据中学习出数据的低维结构和隐藏的模式。 通过无标签数据,我们可以预测以下内容: 低维结构:通过无监督学习算法如主成分分析(PCA),

    2024年02月10日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包