《python深度学习》笔记(二十):神经网络的解释方法之CAM、Grad-CAM、Grad-CAM++、LayerCAM

这篇具有很好参考价值的文章主要介绍了《python深度学习》笔记(二十):神经网络的解释方法之CAM、Grad-CAM、Grad-CAM++、LayerCAM。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

原理 优点 缺点
GAP 将多维特征映射降维为一个固定长度的特征向量 ①减少了模型的参数量;②保留更多的空间位置信息;③可并行计算,计算效率高;④具有一定程度的不变性 ①可能导致信息的损失;②忽略不同尺度的空间信息
CAM 利用最后一个卷积层的特征图×权重(用GAP代替全连接层,重新训练,经过GAP分类后概率最大的神经元的权重 效果已经很不错 需要修改原模型的结构,导致需要重新训练该模型,大大限制了使用场景,如果模型已经上线了,或着训练的成本非常高,我们几乎是不可能为了它重新训练的。
Grad-CAM 最后一个卷积层的特征图×权重(通过对特征图梯度的全局平均来计算权重 ①解决了CAM的缺点,适用于任何卷积神经网络;②利用特征图的梯度,可视化结果更准确和精细
Grad-CAM++ 1. 定位更准确
2. 更适合同类多目标的情况

目录

GAP全局平均池化

CAM

Grad-CAM 

Grad-CAM++


GAP全局平均池化

论文:Network In Network

GAP (Global Average Pooling,全局平均池化),在上述论文中提出,用于避免全连接层的过拟合问题。全局平均池化就是对整个特征映射应用平均池化。

《python深度学习》笔记(二十):神经网络的解释方法之CAM、Grad-CAM、Grad-CAM++、LayerCAM,《python深度学习》笔记,深度学习,神经网络

图1:将原本h × w × d的三维特征图,具体大小为6 × 6 × 3,经过GAP池化为1 × 1 × 3 输出值。也就是每一个channel的h × w 平均池化为一个值。特征图经过 GAP 处理后每一个特征图包含了不同类别的信息。 

GAP平均池化的操作步骤如下:

  1. 经过卷积操作和激活函数后,得到最后一个卷积层的特征图。
  2. 对每个通道的特征图进行平均池化,即计算每个通道上所有元素的平均值。这将每个通道的特征图转化为一个标量值。
  3. 将每个通道的标量值组合成一个特征向量。这些标量值的顺序与通道的顺序相同。
  4. 最终得到的特征向量可以作为分类器的输入,用于进行图像分类。

CAM

论文:Learning Deep Features for Discriminative Localization

原理:利用最后一个卷积层的特征图与经过GAP分类后概率最大的神经元权重进行叠加。

图2:解释了在CNN中使用全局平均池化(GAP)生成类激活映射(CAM)的过程:

《python深度学习》笔记(二十):神经网络的解释方法之CAM、Grad-CAM、Grad-CAM++、LayerCAM,《python深度学习》笔记,深度学习,神经网络

经过最后一层卷积操作之后,得到的特征图包含多个channel,如图1中的不同颜色的3个channel,也就是在GAP之前所对应的不同的channel特征图,就表示第k个channel的特征图。然后经过GAP处理后每个channel的特征图包含了不同类别的信息,就表示分类概率最大的神经元(图2黑色神经元)所对应连接的第k个神经元的权重。

Grad-CAM 

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization (arxiv.org)

Grad-CAM的前身是 CAM,CAM 的基本的思想是求分类网络某一类别得分对高维特征图 (卷积层的输出) 的偏导数,从而可以得到该高维特征图每个通道对该类别得分的权值;而高维特征图的激活信息 (正值) 又代表了卷积神经网络的所感兴趣的信息,加权后使用热力图呈现得到 CAM。

原理:Grad-CAM的关键思想是将输出类别的梯度(相对于特定卷积层的输出)与该层的输出相乘,然后取平均,得到一个“粗糙”的热力图。这个热力图可以被放大并叠加到原始图像上,以显示模型在分类时最关注的区域。

具体步骤如下:

  1. 选择网络的最后一个卷积层,因为它既包含了高级特征,也保留了空间信息。
  2. 前向传播图像到网络,得到你想解释的类别的得分。
  3. 计算此得分相对于我们选择的卷积层输出的梯度。
  4. 对于该卷积层的每个通道,使用上述梯度的全局平均值对该通道进行加权。
  5. 结果是一个与卷积层的空间维度相同的加权热力图。

《python深度学习》笔记(二十):神经网络的解释方法之CAM、Grad-CAM、Grad-CAM++、LayerCAM,《python深度学习》笔记,深度学习,神经网络

《python深度学习》笔记(二十):神经网络的解释方法之CAM、Grad-CAM、Grad-CAM++、LayerCAM,《python深度学习》笔记,深度学习,神经网络

因为热力图关心的是对分类有正面影响的特征,所以在线性组合的技术上加上了ReLU,以移除负值 。

《python深度学习》笔记(二十):神经网络的解释方法之CAM、Grad-CAM、Grad-CAM++、LayerCAM,《python深度学习》笔记,深度学习,神经网络

第 k 个特征图对应于类别 c 的权重,
表示:第 k 个特征图,
表示特征图的像素个数,
表示: 第c类得分的梯度,
表示: 第 k个特征图中坐标( i , j )位置处的像素值;

Grad-CAM代码:

import torch
import cv2
import torch.nn.functional as F
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from PIL import Image
 
class GradCAM:
    def __init__(self, model, target_layer):
        self.model = model  # 要进行Grad-CAM处理的模型
        self.target_layer = target_layer  # 要进行特征可视化的目标层
        self.feature_maps = None  # 存储特征图
        self.gradients = None  # 存储梯度
        
        # 为目标层添加钩子,以保存输出和梯度
        target_layer.register_forward_hook(self.save_feature_maps)
        target_layer.register_backward_hook(self.save_gradients)
 
    def save_feature_maps(self, module, input, output):
        """保存特征图"""
        self.feature_maps = output.detach()
 
    def save_gradients(self, module, grad_input, grad_output):
        """保存梯度"""
        self.gradients = grad_output[0].detach()
 
    def generate_cam(self, image, class_idx=None):
        """生成CAM热力图"""
        # 将模型设置为评估模式
        self.model.eval()
        
        # 正向传播
        output = self.model(image)
        if class_idx is None:
            class_idx = torch.argmax(output).item()
 
        # 清空所有梯度
        self.model.zero_grad()
 
        # 对目标类进行反向传播
        one_hot = torch.zeros((1, output.size()[-1]), dtype=torch.float32)
        one_hot[0][class_idx] = 1
        output.backward(gradient=one_hot.cuda(), retain_graph=True)
 
        # 获取平均梯度和特征图
        pooled_gradients = torch.mean(self.gradients, dim=[0, 2, 3])
        activation = self.feature_maps.squeeze(0)
        for i in range(activation.size(0)):
            activation[i, :, :] *= pooled_gradients[i]
        
        # 创建热力图
        heatmap = torch.mean(activation, dim=0).squeeze().cpu().numpy()
        heatmap = np.maximum(heatmap, 0)
        heatmap /= torch.max(heatmap)
        heatmap = cv2.resize(heatmap, (image.size(3), image.size(2)))
        heatmap = np.uint8(255 * heatmap)
        heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
        
        # 将热力图叠加到原始图像上
        original_image = self.unprocess_image(image.squeeze().cpu().numpy())
        superimposed_img = heatmap * 0.4 + original_image
        superimposed_img = np.clip(superimposed_img, 0, 255).astype(np.uint8)
        
        return heatmap, superimposed_img
 
    def unprocess_image(self, image):
        """反预处理图像,将其转回原始图像"""
        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        image = (((image.transpose(1, 2, 0) * std) + mean) * 255).astype(np.uint8)
        return image
 
def visualize_gradcam(model, input_image_path, target_layer):
    """可视化Grad-CAM热力图"""
    # 加载图像
    img = Image.open(input_image_path)
    preprocess = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
    input_tensor = preprocess(img).unsqueeze(0).cuda()
 
    # 创建GradCAM
    gradcam = GradCAM(model, target_layer)
    heatmap, result = gradcam.generate_cam(input_tensor)
 
    # 显示图像和热力图
    plt.figure(figsize=(10,10))
    plt.subplot(1,2,1)
    plt.imshow(heatmap)
    plt.title('热力图')
    plt.axis('off')
    plt.subplot(1,2,2)
    plt.imshow(result)
    plt.title('叠加后的图像')
    plt.axis('off')
    plt.show()
 
# 以下是示例代码,显示如何使用上述代码。
# 首先,你需要加载你的模型和权重。
# model = resnet20()
# model.load_state_dict(torch.load("path_to_your_weights.pth"))
# model.to('cuda')
 
# 然后,调用`visualize_gradcam`函数来查看结果。
# visualize_gradcam(model, "path_to_your_input_image.jpg", model.layer3[-1])

 Grad-CAM++

Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks (arxiv.org) 

《python深度学习》笔记(二十):神经网络的解释方法之CAM、Grad-CAM、Grad-CAM++、LayerCAM,《python深度学习》笔记,深度学习,神经网络文章来源地址https://www.toymoban.com/news/detail-742930.html

到了这里,关于《python深度学习》笔记(二十):神经网络的解释方法之CAM、Grad-CAM、Grad-CAM++、LayerCAM的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python中的深度学习:神经网络与卷积神经网络

    当下,深度学习已经成为人工智能研究和应用领域的关键技术之一。作为一个开源的高级编程语言,Python提供了丰富的工具和库,为深度学习的研究和开发提供了便利。本文将深入探究Python中的深度学习,重点聚焦于神经网络与卷积神经网络的原理和应用。 深度学习是机器学

    2024年02月08日
    浏览(41)
  • 《动手学深度学习》学习笔记 第9章 现代循环神经网络

    书籍链接: 动手学深度学习 笔记是从第四章开始,前面三章为基础知识,有需要的可以自己去看看 关于本系列笔记: 书里为了让读者更好的理解,有大篇幅的描述性的文字,内容很多,笔记只保留主要内容,同时也是对之前知识的查漏补缺 《动手学深度学习》学习笔记 第

    2024年01月18日
    浏览(51)
  • 基于 Python中的深度学习:神经网络与卷积神经网络

    当下,深度学习已经成为人工智能研究和应用领域的关键技术之一。作为一个开源的高级编程语言,Python提供了丰富的工具和库,为深度学习的研究和开发提供了便利。本文将深入探究Python中的深度学习,重点聚焦于神经网络与卷积神经网络的原理和应用。 深度学习是机器学

    2024年02月07日
    浏览(54)
  • 《Pytorch深度学习和图神经网络(卷 2)》学习笔记——第一章

    PyTorch深度学习和图神经网络(卷2)——开发应用一书配套代码: https://github.com/aianaconda/pytorch-GNN-2nd- 百度网盘链接:https://pan.baidu.com/s/1dnq5IbFjjdekAR54HLb9Pg 提取码:k7vi 压缩包密码:dszn 2012年起,在ILSVRC竞赛中获得冠军的模型如下 2012年:AlexNet 2013年:OverFeat 2014年:GoogLeNet、

    2024年02月16日
    浏览(43)
  • 《Pytorch深度学习和图神经网络(卷 1)》学习笔记——第七章

    这一章内容有点丰富,多用了一些时间,实例就有四五个。 这章内容是真多啊!(学完之后又回到开头感叹) 将图像从基础像素到局部信息再到整体信息 即将图片由低级特征到高级特征进行逐级计算,逐级累计。 计算机中对图片的处理可以理解为离散微积分的过程。 利用

    2024年02月12日
    浏览(46)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十八):卷积神经网络模型

    发布时间:1989年 模型目的:识别手写数字 1.3.1 相关函数原型 1)nn.Conv2d:卷积层

    2024年02月13日
    浏览(73)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十七):卷积神经网络入门

    我们在前面学习的多层感知机中,已经认识了全链接层,缺点很明显,在稍微大点的网络模型中,参数成指数级别增长。参数量很快就达到数十亿,这样的量级几乎无法计算。为此科学家们想出一个减少参数的方法:卷积。 从全链接层到卷积的推论,使用如下两个原则: 平

    2024年02月13日
    浏览(59)
  • 【深度学习笔记】6_2 循环神经网络RNN(recurrent neural network)

    注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图 上一节介绍的 n n n 元语法中,时间步 t t t 的词 w t w_t w t ​ 基于前面所有词的条件概率只考虑了最近时间步的 n − 1 n-1 n − 1 个词。如果要考虑比 t − ( n − 1 ) t-(n-1) t −

    2024年03月12日
    浏览(65)
  • 【毕业设计】深度学习垃圾分类系统 - python 卷积神经网络

    🔥 Hi,大家好,这里是丹成学长的毕设系列文章! 🔥 对毕设有任何疑问都可以问学长哦! 这两年开始,各个学校对毕设的要求越来越高,难度也越来越大… 毕业设计耗费时间,耗费精力,甚至有些题目即使是专业的老师或者硕士生也需要很长时间,所以一旦发现问题,一定

    2023年04月08日
    浏览(45)
  • 文本分类系统Python,基于深度学习CNN卷积神经网络

    文本分类系统,使用Python作为主要开发语言,通过TensorFlow搭建CNN卷积神经网络对十余种不同种类的文本数据集进行训练,最后得到一个h5格式的本地模型文件,然后采用Django开发网页界面,实现用户在界面中输入一段文字,识别其所属的文本种类。 在我们的日常生活和工作中

    2024年02月08日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包