一文读懂从 CPU 多级缓存 & 缓存一致性协议(MESI)到 Java 内存模型

这篇具有很好参考价值的文章主要介绍了一文读懂从 CPU 多级缓存 & 缓存一致性协议(MESI)到 Java 内存模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

CPU 多级缓存 & 缓存一致性协议(MESI)

CPU 多级缓存

  • 参考:Java Memory Model

缓存一致性协议(MESI)

  • 多级缓存的出现解决了CPU处理速度和内存读取速度不一致的问题,但是同时也带来缓存不一致的问题,为了解决这个问题,我们引入了缓存一致性协议,常见的缓存一致性协议有MSI,MESI,MOSI,Synapse,Firefly及DragonProtocol等等,下文以MESI协议进行讲述。

一文读懂从 CPU 多级缓存 & 缓存一致性协议(MESI)到 Java 内存模型,Java 后端经典面试题,JVM,操作系统,缓存,java,开发语言

缓存行(Cache line)

  • 缓存行是指在缓存中的最小数据单元。

四种缓存状态

  • 缓存行有4个状态,用2个bit表示。
状态 描述 监听任务
E 独享 该Cache line有效,数据被修改,和内存数据一致,数据只存在本Cahe中 必须监听所有试图读该缓存行的操作,操作必须在该缓存行写回主存并将状态变为S后执行
M 修改 该Cache line有效,数据被修改,和内存数据不一致,数据只存在本Cahe中 必须监听所有试图读该缓存行的操作,操作必须在该缓存行写回主存并将状态变为S后执行
S 共享 该Cache line有效,数据和内存数据一致,数据存在多个Cache中 必须监听其它缓存使该缓存无效或独享该缓存的请求,并将该缓存行变为无效
I 失效 该Cache line无效
  • 注:对于M和E状态而言总是精确的,他们在和该缓存行的真正状态是一致的,而S状态可能是非一致的。如果一个处于S状态的缓存失效,另外一个缓存行可能已经独享了该缓存行,但是不会升迁为独享状态,因为失效并不会广播给其它缓存行。

缓存行状态转换

一文读懂从 CPU 多级缓存 & 缓存一致性协议(MESI)到 Java 内存模型,Java 后端经典面试题,JVM,操作系统,缓存,java,开发语言

多核协同示例

一文读懂从 CPU 多级缓存 & 缓存一致性协议(MESI)到 Java 内存模型,Java 后端经典面试题,JVM,操作系统,缓存,java,开发语言

  • 初始状态:CPUB 存在缓存变量 X 状态为 M
  • CPUA 发出指令读取 X 指令,通过 bus 读取 X,检测到地址冲突,将 CPUB 缓存变量状态置为 S,读取 X 到 CPUA 完成
  • 此时,CPUB 修改缓存变量并通过 bus 写回主存,发现地址冲突,将 CPUA 中的变量从 S 状态置为 I,数据写回主存
网站体验
  • 模拟一致性的整个过程:https://www.scss.tcd.ie/Jeremy.Jones/VivioJS/caches/MESIHelp.htm

MESI优化和引入的问题

  • 在上述多核CPU为保证缓存一致性进行协同的过程中,消息传递的时间远远大于CPU执行时间,如果每次的操作都需要等待协同指令响应完成,那么就会大大降低处理器的处理性能,因此引入了Store Bufferes和Invalidate Queue进行优化。
Store Bufferes & Invalidate Queue
  • 从上述的多核协同案例中我们可以发现,每次修改缓存中的元素,都需要将无效状态指令(Invalidate Acknowledge)执行完才能将修改的数据写回缓存行中,等待协同指令会造成CPU运算能力浪费,因此,Store Bufferes被引入,我们不需要等待协同指令返回就可以将修改的数据写入Store Bufferes,当再次读取时若在Store Bufferes中已存在直接从Buffer中读取(称为“Store Forwarding”),只有当收到所有协同指令响应后才能写回缓存行中。
  • Store Bufferes 是有限的,因此当要写回缓存行时为了更快的得到所有Invalidate Acknowledge指令的响应,实际上也不会立即执行,而是放入了Invalidate Queue中,并立即返回响应,在合适的时机去执行。

一文读懂从 CPU 多级缓存 & 缓存一致性协议(MESI)到 Java 内存模型,Java 后端经典面试题,JVM,操作系统,缓存,java,开发语言

Store Bufferes & Invalidate Queue 带来的问题
  • Store buffer 什么时候写回并没有保证
value = 3;

void exeToCPUA(){
  value = 10;
  isFinsh = true;
}

void exeToCPUB(){
  if(isFinsh){
    // value 一定等于10?
    // 如果 Store Bufferes 没有写回那么将导致数据不一致
    assert value == 10;
  }
}
  • Invalidate Acknowledge 什么时候执行没有保证
// 当一个CPU尝试读取实际已经失效但未执行 Invalidate Acknowledge 的数据时,会导致数据不一致

硬件内存模型

  • 由于 Store Bufferes & Invalidate Queue 的引入,导致 Store Bufferes 写入缓存行和执行 Invalidate Acknowledge 的时机需要十分合适才能尽可能释放CPU的处理能力,实际上CPU并不知道什么时候会执行,因此将这个任务留给了写程序的人,这就是我们常说的内存屏障。
读屏障 & 写屏障
  • 写屏障 Store Memory Barrier(a.k.a. ST, SMB, smp_wmb)是一条告诉处理器在执行这之后的指令之前,应用所有已经在Store buffer中的保存的指令到缓存行中。

  • 读屏障Load Memory Barrier (a.k.a. LD, RMB, smp_rmb)是一条告诉处理器在执行任何的加载前,应用所有已经在失效队列中的失效操作的指令。文章来源地址https://www.toymoban.com/news/detail-743166.html

void executedOnCpu0() {
    value = 10;
    // 在更新数据之前必须将所有存储缓存(store buffer)中的指令执行完毕。
    storeMemoryBarrier();
    finished = true;
}
void executedOnCpu1() {
    while(!finished);
    // 在读取之前将所有失效队列中关于该数据的指令执行完毕。
    loadMemoryBarrier();
    assert value == 10;
}

思考 & 联系

  • 不同的系统架构有不同的内存屏障,以X86架构为例:读屏障:lfence、写屏障:sfence、读写屏障:mfence。
  • MESI 缓存一致性协议中为了尽可能的提高性能,引入了 Store Bufferes & Invalidate Queue ,将数据具体的失效时机和写入时间交给了内存屏障控制,而 JMM 则基于内存屏障保证数据的可见性。
  • volatile 关键字底层使用了LOCK关键字,LOCK关键字的本质是锁(总线锁或缓存行锁),只是LOCK关键字的一部分能力具备和内存屏障相同的作用,但是和内存屏障还是有一定区别。

到了这里,关于一文读懂从 CPU 多级缓存 & 缓存一致性协议(MESI)到 Java 内存模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Redis】缓存一致性

    读缓存 双检加锁 策略 采用 双检加锁 策略 多个线程同时去查询数据库的这条数据,那么我们可以在第一个查询数据的请求上使用一个 互斥锁来锁住它。 其他的线程走到这一步拿不到锁就等着,等第一个线程查询到了数据,然后做缓存。 后面的线程进来发现已经有缓存了,

    2023年04月24日
    浏览(41)
  • 缓存一致性设计思路

    Spring注解使用,控制Redis缓存更新 缓存一致性问题是如何产生的? 双更新模式:操作不合理,导致数据一致性问题 “后删缓存”,能解决多数不一致 大厂高并发,“后删缓存”依旧不一致 如何解决高并发的不一致问题?延迟双删与闪电缓存 如何解决缓存击穿?读操作互斥

    2023年04月17日
    浏览(41)
  • 深入理解高并发下的MySQL与Redis缓存一致性问题(增删改查数据缓存的一致性、Canal、分布式系统CAP定理、BASE理论、强、弱一致性、顺序、线性、因果、最终一致性)

    一些小型项目,或极少有并发的项目,这些策略在无并发情况下,不会有什么问题。 读数据策略:有缓存则读缓存,然后接口返回。没有缓存,查询出数据,载入缓存,然后接口返回。 写数据策略:数据发生了变动,先删除缓存,再更新数据,等下次读取的时候载入缓存,

    2024年03月20日
    浏览(37)
  • Redis之缓存一致性

    按照缓存更新的方式大致分为: 内存淘汰、过期删除、主动更新。 利用 Redis 的内存淘汰策略,当内存不足时自动进行淘汰部分数据,下次查询时更新缓存,一致性差,无维护成本。 因为 Redis 是基于内存的,如果内存超过限定值( Redis 配置文件的 maxmemory 参数决定 Redis 最大内

    2024年02月07日
    浏览(36)
  • 【Redis】之数说缓存一致性

    对于使用 Redis 作为缓存来说,如何保证数据库和缓存数据一致性是个麻烦的问题。对于缓存和数据库的操作,主要有以下两种方式: 先删缓存,再更新数据库; 先更新数据库,再删除缓存; 这两种方式都存在缓存一致性问题,下面我们就分析一下如何解决这两种方式的缓存

    2024年02月13日
    浏览(28)
  • 缓存和数据库一致性

    项目的难点是如何保证缓存和数据库的一致性。无论我们是先更新数据库,后更新缓存还是先更新数据库,然后删除缓存,在并发场景之下,仍然会存在数据不一致的情况(也存在删除失败的情况,删除失败可以使用异步重试解决)。有一种解决方法是延迟双删的策略,先删

    2024年01月17日
    浏览(32)
  • Redis缓存双写一致性

    如果redis中有数据:需要和数据库中的值相同 如果redis中无数据:数据库中的值要是最新值,且准备回写redis 缓存按照操作来分,可细分为两种: 只读缓存和读写缓存 只读缓存很简单:就是Redis只做查询,有就是有,没有就是没有,不会再进一步访问MySQL,不再需要会写机制

    2023年04月17日
    浏览(28)
  • Redis---缓存双写一致性

    目录 一、什么是缓存双写一致性呢?  1.1 双检加锁机制  二、数据库和缓存一致性的更新策略 2.1、先更新数据库,后更新缓存  2.2 、先更新缓存,后更新数据库  2.3、先删除缓存,在更新数据库 延时双删的策略:  2.4.先更新数据库,在删除缓存(常用) 2.5、实际中是不可

    2024年02月15日
    浏览(31)
  • Redis缓存(双写一致性问题)

    前言 : 什么是缓存? 缓存就像自行车,越野车的避震器 举个例子:越野车,山地自行车,都拥有\\\"避震器\\\", 防止 车体加速后因惯性,在酷似\\\"U\\\"字母的地形上飞跃,硬着陆导致的 损害 ,像个弹簧一样; 同样,实际开发中,系统也需要\\\"避震器\\\",防止过高的数据访问猛冲系统,导致其操作线程无法

    2024年02月02日
    浏览(42)
  • 缓存和数据库一致性问题分析

    目录 1、数据不一致的原因 1.1 并发操作 1.2 非原子操作 1.3 数据库主从同步延迟 2、数据不一致的解决方案 2.1 并发操作 2.2 非原子操作 2.3 主从同步延迟 2.4 最终方案 3、不同场景下的特殊考虑 3.1 读多写少的场景 3.2 读少写多的场景 导致缓存和数据库数据不一致的原因有三个

    2024年02月14日
    浏览(30)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包