神经网络气温预测

这篇具有很好参考价值的文章主要介绍了神经网络气温预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

#引用所需要的库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
import torch.optim as optim#优化器
#过滤警告
import warnings
warnings.filterwarnings(“ignore”)
%matplotlib inline

features=pd.read_csv(‘temps.csv’)
features.head()

year 	month 	day 	week 	temp_2 	temp_1 	average 	actual 	friend

0 2016 1 1 Fri 45 45 45.6 45 29
1 2016 1 2 Sat 44 45 45.7 44 61
2 2016 1 3 Sun 45 44 45.8 41 56
3 2016 1 4 Mon 44 41 45.9 40 53
4 2016 1 5 Tues 41 40 46.0 44 41

#把列转为时间处理数据
import datetime
years=features[‘year’]
months=features[‘month’]
days=features[‘day’]
#datetime格式
dates=[str(int (year))+‘-’+str(int(month))+‘-’+str(int(day)) for year,month,day in zip(years,months,days)]
dates=[datetime.datetime.strptime(date,‘%Y-%m-%d’)for date in dates]

features.shape

(348, 9)

dates[:5]

[datetime.datetime(2016, 1, 1, 0, 0),
datetime.datetime(2016, 1, 2, 0, 0),
datetime.datetime(2016, 1, 3, 0, 0),
datetime.datetime(2016, 1, 4, 0, 0),
datetime.datetime(2016, 1, 5, 0, 0)]

#小展示,看看数据集长什么样

#独热编码
features=pd.get_dummies(features)
features.head(5)

year 	month 	day 	temp_2 	temp_1 	average 	actual 	friend 	week_Fri 	week_Mon 	week_Sat 	week_Sun 	week_Thurs 	week_Tues 	week_Wed

0 2016 1 1 45 45 45.6 45 29 1 0 0 0 0 0 0
1 2016 1 2 44 45 45.7 44 61 0 0 1 0 0 0 0
2 2016 1 3 45 44 45.8 41 56 0 0 0 1 0 0 0
3 2016 1 4 44 41 45.9 40 53 0 1 0 0 0 0 0
4 2016 1 5 41 40 46.0 44 41 0 0 0 0 0 1 0

features.shape

(348, 15)

#标签(Y)
labels=np.array(features[‘actual’])
#在特征集中剔除标签,剩下x
features=features.drop(‘actual’,axis=1)
#单独保存名字,以备后患
feature_list=list(features.columns)
#转成数组格式->后续还需要转换成tensor张量
features=np.array(features)

features.shape

(348, 14)

#因为数据有大有小,归一化(数值浮动范围小)
from sklearn import preprocessing
input_features=preprocessing.StandardScaler().fit_transform(features)

#构建网络模型(复杂版)
#转为tensor
x = torch.tensor(input_features, dtype = float)
y = torch.tensor(labels, dtype = float)
#权重参数初始化
weights = torch.randn((14,128),dtype=float,requires_grad=True)
biases = torch.randn(128,dtype=float,requires_grad=True)
weights2 = torch.randn((128,1),dtype=float,requires_grad=True)
biases2 = torch.randn(1,dtype=float,requires_grad=True)

learning_rate = 0.001
losses = []

for i in range(1000):
#计算隐藏层
hidden = x.mm(weights)+biases
#给激活函数
hidden = torch.relu(hidden)
#预测
predictions = hidden.mm(weights2)+biases2
#计算损失
loss = torch.mean((predictions - y) ** 2)
losses.append(loss.data.numpy())

if i % 100 == 0 :
    print('loss:',loss)
# 反向传播计算  
loss.backward()

#更新参数
weights.data.add_(- learning_rate * weights.grad.data)
biases.data.add_(- learning_rate * biases.grad.data)
weights2.data.add_(- learning_rate * weights2.grad.data)
biases2.data.add_(- learning_rate * biases2.grad.data)
#记得清空权重参数,因为每次迭代会累计
weights.grad.data.zero_()
biases.grad.data.zero_()
weights2.grad.data.zero_()
biases2.grad.data.zero_()

loss: tensor(8652.8872, dtype=torch.float64, grad_fn=)
loss: tensor(155.4351, dtype=torch.float64, grad_fn=)
loss: tensor(147.5643, dtype=torch.float64, grad_fn=)
loss: tensor(144.6621, dtype=torch.float64, grad_fn=)
loss: tensor(143.1741, dtype=torch.float64, grad_fn=)
loss: tensor(142.2740, dtype=torch.float64, grad_fn=)
loss: tensor(141.6748, dtype=torch.float64, grad_fn=)
loss: tensor(141.2530, dtype=torch.float64, grad_fn=)
loss: tensor(140.9336, dtype=torch.float64, grad_fn=)
loss: tensor(140.6799, dtype=torch.float64, grad_fn=)

简化实现

指定规模

input_size = input_features.shape[1]
hidden_size = 128
output_size = 1
batch_size = 16

搭建网络

my_nn = torch.nn.Sequential(
torch.nn.Linear(input_size,hidden_size),
torch.nn.Sigmoid(),
torch.nn.Linear(hidden_size,output_size),
)

定义损失函数

cost = torch.nn.MSELoss(reduction = ‘mean’)
optimizer = torch.optim.Adam(my_nn.parameters(),lr = 0.001)

训练网络

losses = []
for i in range(1000):
batch_loss = []
# 小批量随机梯度下降进行训练
for start in range(0,len(input_features),batch_size):
end = start+batch_size if start + batch_size < len(input_features) else len(input_features)
xx = torch.tensor(input_features[start:end],dtype = torch.float,requires_grad = True)
yy = torch.tensor(labels[start:end],dtype = torch.float,requires_grad = True)
prediction = my_nn(xx)
loss = cost(prediction,yy)
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
batch_loss.append(loss.data.numpy())

# 打印损失
# 打印损失值
if i % 100 == 0:
    losses.append(np.mean(batch_loss))
    print(i,np.mean(batch_loss))

0 4015.5623
100 38.040577
200 35.64831
300 35.261333
400 35.099106
500 34.968235
600 34.84836
700 34.728233
800 34.605637
900 34.48074

#评估模型
x = torch.tensor(input_features,dtype = torch.float)
predict = my_nn(x).data.numpy()

转换日期格式

dates = [str(int(year))+‘-’+str(int(month))+‘-’+str(int(day)) for year,month,day in zip(years,months,days)]
dates = [datetime.datetime.strptime(date,‘%Y-%m-%d’) for date in dates]

创建一个表格来存日期和其对应的标签数值

true_data = pd.DataFrame(data = {‘date’:dates,‘actual’:labels})

同理,在创建一个来存日期和其对应的模型预测值

mouths = features[:,feature_list.index(‘month’)]
days = features[:,feature_list.index(‘day’)]
years = features[:,feature_list.index(‘year’)]

test_dates = [str(int(year))+‘-’+str(int(month))+‘-’+str(int(day)) for year,month,day in zip(years,months,days)]
test_dates = [datetime.datetime.strptime(date,‘%Y-%m-%d’) for date in test_dates]

predictions_data = pd.DataFrame(data = {‘date’:test_dates,‘prediction’:predict.reshape(-1)})

真实值

plt.plot(true_data[‘date’],true_data[‘actual’],‘b-’,label = ‘actual’)

预测值

plt.plot(predictions_data[‘date’],predictions_data[‘prediction’],‘ro’,label = ‘prediction’)
plt.xticks(rotation = ‘60’)
plt.legend()

图名

plt.xlabel(‘Date’);plt.ylabel(‘Maximum Temperature (F)’);plt.title(‘Actual and Predicted Values’)

plt.show()
ValueError: rotation must be ‘vertical’, ‘horizontal’ or a number, not 60文章来源地址https://www.toymoban.com/news/detail-743760.html

到了这里,关于神经网络气温预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 运用自回归滑动平均模型、灰色预测模型、BP神经网络三种模型分别预测全球平均气温,并进行预测精度对比(附代码、数据)

            大家好,我是带我去滑雪,每天教你一个小技巧!全球变暖是近十年来,人们关注度最高的话题。2022年夏天,蔓延全球40℃以上的极端天气不断刷新人们对于高温的认知,人们再也不会像从前那样认为全球变暖离我们遥不可及。在此背景下,基于1880年-2022年全球平均

    2024年02月08日
    浏览(35)
  • 循环神经网络-单变量序列预测详解(pytorch)

    参考博客 (1)导入所需要的包 (2)读取数据并展示 (3)数据预处理 缺失值,转化成numpy.ndarray类型,转化成float类型,归一化处理 (4)划分训练集和测试集 用30个预测一个 1-30:31 2-31:32 … 94-143:144 需要注意 a = [dataset[i: (i + look_back)]] ,而不是 a = dataset[i: (i + look_back)] 对于

    2024年01月17日
    浏览(58)
  • 基于PyTorch神经网络进行温度预测——基于jupyter实现

    导入环境 读取文件 其中 数据表中 year,moth,day,week分别表示的具体的时间 temp_2:前天的最高温度值 temp_1:昨天的最高温度值 average:在历史中,每年这一天的平均最高温度值 actual:这就是我们的标签值了,当天的真实最高温度 friend:据说凑热闹 查阅数据维度 时间维度数据进

    2024年04月14日
    浏览(30)
  • 【复杂网络建模】——使用PyTorch和DGL库实现图神经网络进行链路预测

    🤵‍♂️ 个人主页:@Lingxw_w的个人主页 ✍🏻作者简介:计算机科学与技术研究生在读 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+  目录 1、常见的链路预测方法 2、图神经网络上的链路预测 3、使用PyTorc

    2024年02月09日
    浏览(38)
  • 使用自己的数据利用pytorch搭建全连接神经网络进行回归预测

    引入必要的库,包括PyTorch、Pandas等。 这里使用sklearn自带的加利福尼亚房价数据,首次运行会下载数据集,建议下载之后,处理成csv格式单独保存,再重新读取。 后续完整代码中,数据也是采用先下载,单独保存之后,再重新读取的方式。

    2024年02月13日
    浏览(46)
  • Python使用pytorch深度学习框架构造Transformer神经网络模型预测红酒分类例子

    经典的红酒分类数据集是指UCI机器学习库中的Wine数据集。该数据集包含178个样本,每个样本有13个特征,可以用于分类任务。 具体每个字段的含义如下: alcohol:酒精含量百分比 malic_acid:苹果酸含量(克/升) ash:灰分含量(克/升) alcalinity_of_ash:灰分碱度(以mEq/L为单位)

    2024年02月02日
    浏览(41)
  • 基于双向长短期神经网络BILSTM的指数预测,基于gru神经网络的指数预测

    目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 BILSTM神经网络 基于双向长短期神经网络BILSTM的指数预测,基于gru神经网络的指数预测 完整代码:基于双向长短期神经网络BILSTM的指数预测,基于gru神经网络的指数预测(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/d

    2024年04月24日
    浏览(55)
  • 二、PyTorch气温预测项目实战

    训练数据集:temps.csv免费下载链接 数据集主要包括348条样本,共8个自变量,1个因变量 自变量 因变量 year:年 actual:当天的真实最高温度 month:月 day:日 week:星期 temp_1:昨天的最高温度值 temp_2:前天的最高温度值 average:在历史中,每年这一天的平均最高温度值 friend:朋

    2024年02月09日
    浏览(31)
  • BP神经网络预测实例(matlab代码,神经网络工具箱)

    参考学习b站资源: 数学建模学习交流 bp神经网络预测matlab代码实现过程 神经网络简介 可在github下载(含原始样品数据): https://github.com/chenshunpeng/BP-neural-network 最早的神经网络模型, 单层感知器perceptron,结构如下: 这是一个两层的神经网络,第一层为输入层,第二层为输

    2024年02月12日
    浏览(42)
  • 基于BP神经网络的定位算法,基于BP神经网络定位预测

    摘要 BP神经网络参数设置及各种函数选择 参数设置 训练函数 传递函数 学习函数 性能函数 显示函数 前向网络创建函数 BP神经网络训练窗口详解 训练窗口例样 训练窗口四部详解 基于BP神经网络的定位算法,基于BP神经网络定位预测 代码下载:基于BP神经网络的定位算法,基

    2024年02月02日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包