分块对角矩阵的求逆

这篇具有很好参考价值的文章主要介绍了分块对角矩阵的求逆。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分块对角矩阵的逆矩阵:
[ A B C ⋱ ] − 1 = [ A − 1 B − 1 C − 1 ⋱ ] \begin{bmatrix} \mathbf{A} \\ &\mathbf{B} \\ &&\mathbf{C} \\ &&&\ddots \\ \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{A}^{-1} \\ &\mathbf{B}^{-1} \\ &&\mathbf{C}^{-1} \\ &&&\ddots \\ \end{bmatrix} ABC1=A1B1C1文章来源地址https://www.toymoban.com/news/detail-744294.html

到了这里,关于分块对角矩阵的求逆的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数|例题:利用伴随矩阵求逆矩阵

    【例1:同济线代习题二 9.1】求下列矩阵的逆矩阵: A = ( 1 2 2 5 ) boldsymbol{A} = begin{pmatrix} 1 2 \\\\ 2 5 end{pmatrix} A = ( 1 2 ​ 2 5 ​ ) 解答 因为 ∣ A ∣ = 5 − 4 = 1 ≠ 0 |boldsymbol{A}| = 5 - 4 = 1 ne 0 ∣ A ∣ = 5 − 4 = 1  = 0 ,所以 A boldsymbol{A} A 可逆。有 A − 1 = 1 ∣ A ∣ A ∗ = ( 5 − 2 −

    2024年02月08日
    浏览(27)
  • 线性代数:线性方程求解、矩阵的逆、线性组合、线性独立

    本文参考www.deeplearningbook.org一书第二章2.3 Identity and Inverse Matrices 2.4 Linear Dependence and Span 本文围绕 线性方程求解 依次介绍矩阵的逆、线性组合、线性独立等线性代数的基础知识点。 本文主要围绕求解线性方程展开,我们先把线性方程写出来,方程如下: 其中,是已知的;,

    2024年02月08日
    浏览(38)
  • 0205矩阵分块法-矩阵及其运算-线性代数

    1 分块矩阵的定义 将矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的子快,以子块为元素的形式上的矩阵称为分块矩阵。 2 分块矩阵的运算(性质) 设矩阵A与B的行数相同,列数相同,采用相同的分块法,有 A = ( A 11 ⋯ A 1 r ⋮ ⋮ A s 1 ⋯ A s r ) , B = ( B 11 ⋯

    2024年04月26日
    浏览(26)
  • 线性代数让我想想:快速求三阶矩阵的逆矩阵

    前言 一般情况下,我们求解伴随矩阵是要注意符号问题和位置问题的(如下所示) A − 1 = 1 [    ] [ − [    ] − [    ] − [    ]    − [    ] ] = A − 1 = 1 [    ] [     M 11 − [ M 12 ]     M 13 − [ M 21 ]     M 22 − [ M 23 ]        M 31 − [ M 32 ]     M 33 ] ⊤ begin{aligned} A^{-

    2023年04月09日
    浏览(29)
  • 【线性代数】从矩阵分块的角度理解矩阵乘法

    概念: 例: 1. 分块矩阵计算的数学步骤 使用Numpy计算例1 按列分块 按行分块 分块后的计算公式 矩阵分块法提供了行数和列数较多的矩阵相乘的一种计算方法,以此来简化矩阵相乘的运算次数; 按行列分块将矩阵A分为n个列向量和m个行向量,利用矩阵乘法的定义,殊途同归

    2024年02月13日
    浏览(33)
  • 线性代数|分块矩阵的运算规则

    定理 1 设矩阵 A boldsymbol{A} A 与 B boldsymbol{B} B 的行数相同、列数相同,采用相同的分块法,有 A = ( A 11 ⋯ A 1 r ⋮ ⋮ A s 1 ⋯ A s r ) , B = ( B 11 ⋯ B 1 r ⋮ ⋮ B s 1 ⋯ B s r ) boldsymbol{A} = begin{pmatrix} boldsymbol{A}_{11} cdots boldsymbol{A}_{1r} \\\\ vdots vdots \\\\ boldsymbol{A}_{s1} cdots boldsymbol{

    2024年02月07日
    浏览(33)
  • 线性代数 --- 矩阵求逆的4种方法

             写在最前面: 在大多数情况下,我们学习线性代数的目的是为了求解线性方程组Ax=b, 而不是为了求A的逆 。         单就解方程而言, LU分解是最实用的算法。 只需按照A=LU——Ax=b,LUx=b——Ly=b(正向回代求得y),Ux=y(反向回代,最终求得x)的步骤求解即可。根本

    2023年04月08日
    浏览(27)
  • 线性代数的学习和整理4: 求逆矩阵的多种方法汇总

    目录 原始问题:如何求逆矩阵? 1 EXCEL里,直接可以用黑盒表内公式 minverse() 数组公式求A- 2 非线性代数方法:解方程组的方法 3  增广矩阵的方法 4   用行列式的方法计算(未验证) 5  A-=1/|A|*A* (未验证) 求逆矩阵的方法很多 方法1:矩形计算展开为方程组,解方程组得出

    2024年02月12日
    浏览(33)
  • 线性代数Python计算:矩阵对角化

    线性变换 T T T 的矩阵 A ∈ P n × n boldsymbol{A}in P^{ntimes n} A ∈ P n × n 的对角化,即寻求对角阵 Λ boldsymbol{Lambda} Λ ,使得 A boldsymbol{A} A ~ Λ boldsymbol{Lambda} Λ ,需分几步走: (1)解方程 det ⁡ ( λ I − A ) = 0 det(lambdaboldsymbol{I}-boldsymbol{A})=0 det ( λ I − A ) = 0 ,得根 λ 1 , λ

    2024年02月08日
    浏览(33)
  • 宋浩线性代数笔记(五)矩阵的对角化

    本章的知识点难度和重要程度都是线代中当之无愧的T0级,对于各种杂碎的知识点,多做题+复盘才能良好的掌握,良好掌握的关键点在于:所谓的性质A与性质B,是谁推导得谁~ 目录 5.1矩阵的特征值和特征向量 5.2特征值和特征向量的性质 5.3相似矩阵and矩阵可对角化的条件 

    2024年02月13日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包