python-线性规划

这篇具有很好参考价值的文章主要介绍了python-线性规划。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

线性规划:定义:1

线性规划(Linear programming,简称LP),是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,是辅助人们进行科学管理的一种数学方法,是研究线性约束条件下线性目标函数的极值问题的数学理论和方法。

线性规划是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。

建模流程2

  1. 理解要解决的问题,目标及限制条件
  2. 定义决策变量(x1, x2, …, xn),每一组值表示一个方案。
  3. 用决策变量的线性函数形式写出目标函数,确定最大化目标或最小化目标。
  4. 用一组决策变量的等式或不等式表示解决问题过程中必须遵循的约束条件。

目标函数:Max(Min)z=c1x1+c2x2+…+cnxn
约束条件:
a11x1+a12x2+…+a1nxn≤b1
a21x1+a22x2+…+a2nxn≤b2
am1x1+am2x2+…+amnxn≤bm
x1,x2,…,xn≥0,bi≥0

python模块

使用python工具包:from scipy.optimize import linprog

def linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None,
            bounds=None, method='interior-point', callback=None,
            options=None, x0=None)

变量解释:

python线性规划,Python,python,数学建模,开发语言,线性规划

Python的SciPy库中的linprog函数是用来解决最小化问题的,因此,对于最大化问题,有必要对原始目标函数进行转换。通过将目标函数的系数乘以-1(改变其符号),可以将最小化问题转化为一个最大化问题。

案例

工厂生产产品1和产品2,产品1每台获利50元,产品2每台获利100块,资源限制产品1+产品2总共不超过300台;材料A不超过400千克,材料B不超过25千克;问:产品1和产品2分别生产多少台获利最大?
python线性规划,Python,python,数学建模,开发语言,线性规划
目标函数(获利):
maxz = 50 * x1 + 100 * x2

限制条件:
x1 + x2 <= 300
2 * x1 + x2 <= 400
x2 <= 250(0x1 + 1x2<=250)
x1 > 0 (1x1 + 0x2>0)
x2 > 0 (0x1 + 1x2>0)

python求解:

from scipy.optimize import linprog
import numpy as np

a = np.array([[1,1],[2,1],[0,1],[-1,0],[0,-1]])
b = np.array([300,400,250,0,0])
c = np.array([-50,-100])
res = linprog(c,A_ub=a,b_ub=b)
print(res)

python线性规划,Python,python,数学建模,开发语言,线性规划

fun为最优解,即27500。x为最优组合,产品1个数50,产品2个数250台;nit是迭代次数


  1. 百度百科-线性规划定义 ↩︎

  2. 《商业策略数据分析》 ↩︎文章来源地址https://www.toymoban.com/news/detail-744323.html

到了这里,关于python-线性规划的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数学建模】Python+Gurobi求解非线性规划模型

    目录 1 概述 2 算例  2.1 算例 2.2 参数设置 2.3 Python代码实现 2.4 求解结果 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。 参考:(非线性规划Python)计及动态约束及节能减排环保要求的经济调度 2.1 算例 2.2 参数设置 求解NLP/非凸问题时,

    2024年02月09日
    浏览(47)
  • 数学建模整理-线性规划、整数规划、非线性规划

    在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济 效益的问题。若目标函数及约束条件均为线性函数,则称为线性规划(Linear Programming 简记 LP)。 可行解 :满足约束条件的解。 可行预 :所有可行解构成的集合称为问题的可行域,记为R。 图解法

    2024年02月06日
    浏览(41)
  • 数学建模——线性规划

    目录 基本概念 模型求解和应用 基于求解器的求解方法 基于问题的求解方法 其他  运筹学的一个重要分支是数学规划,线性规划是数学规划的一个重要的分支。 变量称为 决策变量 ,规划的目标称为 目标函数 ,限制条件称为 约束条件 ,s.t.是“受约束于”的意思。 建立线

    2024年01月18日
    浏览(46)
  • 【数学建模】线性规划

    1.1线性规划的实例与定义 1.2线性规划的Matlab标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab中规定线性规划的标准形式为 其中c和x为n维列向量,A,Aeq为适当维数

    2024年02月09日
    浏览(44)
  • 数学建模——线性规划类

    [x,y]=linprog(c,A,b,Aeq,beq,lb,ub) 例如: max需要加负号变成min、=需要加负号变成= matlab (1)基于求解器 (2)基于问题 con中根据符号分类 python (1)绝对值 (2)min(max(q*x)) (见风投案例模型二) 【0】题目描述 【1】模型一 模型一:设定风险度的最大接受值,在不太冒险的情况下

    2024年02月13日
    浏览(46)
  • 数学建模(二)线性规划

    课程推荐:6 线性规划模型基本原理与编程实现_哔哩哔哩_bilibili 目录 一、线性规划的实例与定义 1.1 线性规划的实例 1.2 线性规划的定义 1.3 最优解 1.4 线性规划的Mathlab标准形式 1.5 使用linprog函数 二、线性规划模型建模实战与代码 2.1 问题提出 2.2 基本假设 2.3 模型的分析与建

    2024年02月12日
    浏览(42)
  • 数学建模十大算法03—线性规划、整数规划、非线性规划、多目标规划

    一、线性规划(Linear Programming,LP) 1.1 引例 在人们的生产实践中,经常会遇到 如何利用现有资源来安排生产,以取得最大经济效益的问题。 此类问题构成了运筹学的一个重要分支一数学规划,而 线性规划(Linear Programming, LP) 则是数学规划的一个重要分支。 简而言之,线

    2024年02月13日
    浏览(46)
  • 数学建模| 线性规划(Matlab)

    线性规划:约束条件和目标函数都是线性的。简单点说,所有的决策变量在目标函数和约束条件中都是一次方。 Matlab函数: 参数解释: func 表示目标函数。 A 表示不等式约束条件系数矩阵,b 表示不等式约束条件常数矩阵。 Aeq 表示等式约束条件系数矩阵,beq 表示等式约束条

    2024年02月07日
    浏览(44)
  • 数学建模——非线性规划

    目录 基本概念 凸规划 判别定理 二次规划模型 非线性规划的求解 无约束极值问题 有约束极值问题 基于求解器的解法 基于问题的求解 其他 非线性规划:描述目标函数或约束条件条件的数学表达式中,至少有一个是非线性函数。 记是n维欧式空间中的一个点(n维向量),,

    2024年02月06日
    浏览(44)
  • 数学建模【非线性规划】

    一、非线性规划简介 通过分析问题判断是用线性规划还是非线性规划 线性规划:模型中所有的变量都是一次方 非线性规划:模型中至少一个变量是非线性 非线性规划在形式上与线性规划非常类似,但在数学上求解却困难很多 线性规划有通用的求解准确解的方法(单纯形法

    2024年02月19日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包