基于遗传算法优化BP神经网络的滑坡稳定性预测,BP神经网络的详细原理

这篇具有很好参考价值的文章主要介绍了基于遗传算法优化BP神经网络的滑坡稳定性预测,BP神经网络的详细原理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

BP神经网络的原理
BP神经网络的定义
BP神经网络的基本结构
BP神经网络的神经元
BP神经网络的激活函数,
BP神经网络的传递函数
遗传算法原理
遗传算法主要参数
遗传算法流程图
完整代码包含数据下载链接: 遗传算法优化BP神经网络的MATALB代码,遗传算法优化BP神经网络滑坡稳定性预测资源-CSDN文库 https://download.csdn.net/download/abc991835105/88501225
数据
matlab编程实现
效果图
结果分析
展望

摘要

遗传算法,BP神经网络,回归分析,自遗传算法,自遗传算法优化BP神经网络权值阈值滑坡稳定性预测

BP神经网络的原理

BP神经网络的定义

人工神经网络无需事先确定输入输出之间映射关系的数学方程,仅通过自身的训练,学习某种规则,在给定输入值时得到最接近期望输出值的结果。作为一种智能信息处理系统,人工神经网络实现其功能的核心是算法。BP神经网络是一种按误差反向传播(简称误差反传)训练的多层前馈网络,其算法称为BP算法,它的基本思想是梯度下降法,利用梯度搜索技术,以期使网络的实际输出值和期望输出值的误差均方差为最小,BP神经网络是一种成熟的神经网络,拥有大量的训练传递函数。

BP神经网络的基本结构

基本BP算法包括信号的前向传播和误差的反向传播两个过程。即计算误差输出时按从输入到输出的方向进行,而调整权值和阈值则从输出到输入的方向进行。正向传播时,输入信号通过隐含层作用于输出节点&文章来源地址https://www.toymoban.com/news/detail-744796.html

到了这里,关于基于遗传算法优化BP神经网络的滑坡稳定性预测,BP神经网络的详细原理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包