【算法】新年好(堆优化dijkstra)

这篇具有很好参考价值的文章主要介绍了【算法】新年好(堆优化dijkstra)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

题目 

        重庆城里有 n 个车站,m 条 双向 公路连接其中的某些车站。

        每两个车站最多用一条公路连接,从任何一个车站出发都可以经过一条或者多条公路到达其他车站,但不同的路径需要花费的时间可能不同。

        在一条路径上花费的时间等于路径上所有公路需要的时间之和。

        佳佳的家在车站 1,他有五个亲戚,分别住在车站 a,b,c,d,e。

        过年了,他需要从自己的家出发,拜访每个亲戚(顺序任意),给他们送去节日的祝福。

        怎样走,才需要最少的时间?

输入格式

        第一行:包含两个整数 n,m,分别表示车站数目和公路数目。

        第二行:包含五个整数 a,b,c,d,e,分别表示五个亲戚所在车站编号。

        以下 m 行,每行三个整数 x,y,t,表示公路连接的两个车站编号和时间。

输出格式

        输出仅一行,包含一个整数 T,表示最少的总时间。

数据范围

1 ≤ n ≤ 50000
1 ≤ m ≤ 10^5
1 < a,b,c,d,e ≤ n
1 ≤ x , y ≤ n
1 ≤ t ≤ 100

思路

样例:
6 6
2 3 4 5 6
1 2 8
2 3 3
3 4 4
4 5 5
5 6 2
1 6 7

根据样例,我们可以得到一张图: 

 【算法】新年好(堆优化dijkstra),算法,算法,图论,dijkstra,dfs

因为数据范围:

1 ≤ n ≤ 50000
1 ≤ m ≤ 10^5

我们可知这是一张稀疏图,我们可以使用邻接矩阵进行存储。

我们可以进行6次堆优化版的dijkstra算法,依次求出佳佳与五个亲戚到其他点的最小距离。

【算法】新年好(堆优化dijkstra),算法,算法,图论,dijkstra,dfs

        当我们得到佳佳与五个亲戚到其余点的最小距离之后,我们可以考虑使用深度搜索去搜索佳佳拜访五位亲戚的顺序,并保留这些顺序中的最小值。

 文章来源地址https://www.toymoban.com/news/detail-745394.html

代码

#include<bits/stdc++.h>
using namespace std;
const int N = 50010,M = 200010,INF = 0x3f3f3f3f;
typedef pair<int,int> PII;
int n,m;
int source[6];
int h[N],e[M],w[M],ne[M],idx;
int q[N],dist[6][N];
bool st[N];

void add(int a,int b,int c)
{
    e[idx] = b,w[idx] = c,ne[idx] = h[a],h[a] = idx ++;
}

void spfa(int start,int dist[])
{
    memset(dist,0x3f,N * 4);
    dist[start] = 0;
    priority_queue<PII,vector<PII>,greater<PII>> heap;
    heap.emplace(0,start);
    while(!heap.empty())
    {
        auto t = heap.top();
        heap.pop();
        int x = t.second;
        for(int i = h[x]; i != -1; i = ne[i])
        {
            int j = e[i];
            if(dist[j] > dist[x] + w[i])
            {
                dist[j] = dist[x] + w[i];
                heap.emplace(dist[j],j);
            }
        }
    }
}

int dfs(int u,int start,int distance)
{
    if(u == 6) return distance;
    int res = INF;
    for(int i = 1; i <= 5; i++)
        if(!st[i])
        {
            int next = source[i];
            st[i] = true;
            res = min(res,dfs(u + 1,i,distance + dist[start][next]));
            st[i] = false;
        }
    return res;
}

int main()
{
    scanf("%d%d",&n,&m);
    source[0] = 1;
    for(int i = 1; i<= 5; i ++) scanf("%d",&source[i]);
    memset(h,-1,sizeof(h));
    while(m --)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c),add(b,a,c);
    }
    for(int i = 0; i < 6; i ++) spfa(source[i],dist[i]);
    cout << dfs(1,0,0) << endl;
    return 0;
}

到了这里,关于【算法】新年好(堆优化dijkstra)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包