我在Vscode学OpenCV 基本的加法运算

这篇具有很好参考价值的文章主要介绍了我在Vscode学OpenCV 基本的加法运算。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

根据上一篇我们可知__图像的属性

链接:《我在Vscode学OpenCV 处理图像》

属性— API
形状 img.shape
图像大小 img.size
数据类型 img.dtype

 shape:如果是彩色图像,则返回包含行数、列数、通道数的数组;如果是二值图像或者灰度图像,则仅返回行数和列数。通过该属性的返回值是否包含通道数,可以判断一幅图像是灰度图像(或二值图像)还是彩色图像。

 size:返回图像的像素数目。其值为“行×列×通道数”,灰度图像或者二值图像的通道数为 1。

# 用shape()属性
# shape[0]是宽度
# shape[1]是高度
# shape[2]是通道数(深度)
newimg.size 
newimg.shape # (1280, 1706, 3)
#  print(1280*1706*3) 

 dtype:返回图像的数据类型

三、 图像上的运算

3.1 NumPy的运算

需要两个图像相同大小
你可以使用OpenCV的cv.add0函数把两幅图像相加,或者可以简单地通过numpy操作添加两个图像,如res= img1 + img2。两个图像应该具有相同的大小和类型,或者第二个图像可以是标量值(即:可以是一个数值)。

注意:OpenCV加法和Numpy加法之间存在差异。OpenCV的加法是饱和操作,而Numpy添加是模运算。

x=np.uint8([250])
y=np.uint8([10])
print(cv.add(x,y))# [[255]]
#原因: (250+10)=260  =>255
print(x+y)# [4]
#原因:  (250+10)=260%256=4

3.1.1 先声明一个比较不好的行为

(1)没有限制unitx(x为需要设定的,或者其他的)
import numpy as np
import cv2 as cv
a=1,123,123
b=2333

print(cv.add(a, b))
print(np.add(a, b))

在Python中,逗号(,)用于分隔多个数值,但它不会像小数点(.)一样表示小数。所以在你的例子中,a被解释为一个整数1,以及两个整数123和123。而b仍然是一个整数2333。

当你使用np.add(a, b)时,Numpy会将a和b作为两个独立的元素进行相加运算。在这种情况下,由于a实际上表示的是3个元素,所以Numpy会将b重复3次,然后进行逐个元素相加的运算。

所以,结果是array([[2334, 2356, 2356]]),每个元素分别是1+2333,123+2333,123+2333。请注意,这与你之前提供的期望结果(array([[2334.],[2456.],[2456.123]]))不同。如果你想得到相同的结果,应该将a定义为一个包含一个元素的列表或数组,即a=[1, 123, 123.123]。

我在Vscode学OpenCV 基本的加法运算,OpenCV,opencv,人工智能,计算机视觉

(2)在OpenCV中,当输出结果的值较大时,会使用科学计数法或指数形式进行表示。

这是为了在输出时节省空间,并使结果更易读。例如,对于一个很大的数字2334,OpenCV可能会以2.334e+03的形式进行表示,其中e+03表示10的3次方,即1000。这种表示方法可以更简洁地表示大数字,并且更容易读取和理解。
我在Vscode学OpenCV 基本的加法运算,OpenCV,opencv,人工智能,计算机视觉

3.1.2 NumPy的 ’ + '运算

NumPy的加法是模运算,即当像素值溢出时,会对结果进行取模操作。

mod()是取模运算,“mod(a+b, 256)”表示计算“a+b 的和除以 256 取余数”

需要注意,这是由数组的类型 dtype=np.uint8 所规定的
我在Vscode学OpenCV 基本的加法运算,OpenCV,opencv,人工智能,计算机视觉

3.2 cv2.add()函数

使用函数 cv2.add()对像素值 a 和像素值 b 进行求和运算时,会得到像素值对应图像的饱和值(最大值)。
我在Vscode学OpenCV 基本的加法运算,OpenCV,opencv,人工智能,计算机视觉

形式 1:计算结果=cv2.add(图像 1,图像 2),两个参数都是图像,此时参与运算的图像大小和类型必须保持一致。
 形式 2:计算结果=cv2.add(数值,图像),第 1 个参数是数值,第 2 个参数是图像,此时
将超过图像饱和值的数值处理为饱和值(最大值)。
 形式 3:计算结果=cv2.add(图像,数值),第 1 个参数是图像,第 2 个参数是数值,此时
将超过图像饱和值的数值处理为饱和值(最大值)。

图像 + 数值的运算的效果

通道未反转

我在Vscode学OpenCV 基本的加法运算,OpenCV,opencv,人工智能,计算机视觉
通道未反转图像 + 数值的运算

我在Vscode学OpenCV 基本的加法运算,OpenCV,opencv,人工智能,计算机视觉

3.3 运算

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

# 1 读取图像
img1 = cv.imread("./Pic/test_img.jpg")
img2 = cv.imread("./Pic/test_img.jpg")

# 2 加法操作
img3 = cv.add(img1,img2) # cv中的加法
img4 = img1+img2 # 直接相加

# 3 图像显示
fig,axes=plt.subplots(nrows=1,ncols=5,figsize=(10,8),dpi=100)
axes[0].imshow(img3[:,:,::-1])
axes[0].set_title("cv中的加法")
axes[1].imshow(img4[:,:,::-1])
axes[1].set_title("直接相加")
axes[2].imshow(img1-img2)
axes[3].imshow(img1*img2)
axes[4].imshow(img1/img2)
plt.show()
(1)上述代码解释:
没问题!以下是代码中每个参数和函数的解释:

```python
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
  • import numpy as np:导入NumPy库,并将其别名设置为np。NumPy提供了高效的数值运算支持。

  • import cv2 as cv:导入OpenCV库,并将其别名设置为cv。OpenCV是一种常用的计算机视觉库,提供各种图像处理功能。

  • import matplotlib.pyplot as plt:从Matplotlib库中导入pyplot模块,并将其别名设置为plt。Matplotlib是一个用于在Python中可视化数据的绘图库。

img1 = cv.imread("./Pic/test_img.jpg")
img2 = cv.imread("./Pic/test_img.jpg")
  • cv.imread("./Pic/test_img.jpg"):使用OpenCV的imread()函数从"./Pic/"目录中读取名为"test_img.jpg"的图像文件。图像数据存储在变量img1img2中。
img3 = cv.add(img1, img2) # cv中的加法
img4 = img1 + img2 # 直接相加
  • cv.add(img1, img2):使用OpenCV的add()函数对img1img2进行逐元素相加操作。该函数将两幅图像对应位置的像素值相加,并返回结果图像,存储在变量img3中。

  • img1 + img2:使用NumPy的加法运算符对img1img2进行逐元素相加操作。它直接相加两幅图像对应位置的像素值,没有限制或约束,并将结果存储在变量img4中。

fig, axes = plt.subplots(nrows=1, ncols=5, figsize=(10, 8), dpi=100)
axes[0].imshow(img3[:, :, ::-1])
axes[0].set_title("cv中的加法")
axes[1].imshow(img4[:, :, ::-1])
axes[1].set_title("直接相加")
axes[2].imshow(img1 - img2)
axes[3].imshow(img1 * img2)
axes[4].imshow(img1 / img2)
plt.show()
  • plt.subplots(nrows=1, ncols=5, figsize=(10, 8), dpi=100):创建一个包含多个子图的图形对象。它创建了一个拥有1行5列的子图网格,指定了大小为(10, 8)英寸和分辨率为100点每英寸(dpi)。生成的图形对象和子图对象分别存储在变量figaxes中。

  • axes[0].imshow(img3[:, :, ::-1]):在第一个子图(axes[0])中显示图像img3img3[:, :, ::-1]用于将OpenCV的BGR颜色格式转换为RGB格式,以便与Matplotlib的imshow()函数显示。

  • axes[0].set_title("cv中的加法"):将第一个子图的标题设置为"cv中的加法"。

  • 类似地,后续的代码行使用不同的图像操作(如减法img1 - img2、乘法img1 * img2和除法img1 / img2)显示并设置其他子图的标题。

  • plt.show():显示包含所有子图的图形对象。
    ``
    我在Vscode学OpenCV 基本的加法运算,OpenCV,opencv,人工智能,计算机视觉

(2)避免错误:不超过最大的计算能力,不除以0(无效值)

我在Vscode学OpenCV 基本的加法运算,OpenCV,opencv,人工智能,计算机视觉
我在Vscode学OpenCV 基本的加法运算,OpenCV,opencv,人工智能,计算机视觉

这个错误是由于在代码中进行图像除法操作时出现了无效值(invalid value)导致的。具体而言,被除数img2中存在某些像素值为零,从而导致了除以零的情况。

要解决这个问题,你可以添加一些额外的处理来处理除以零的情况,例如将零值像素替换为一个非零值或者跳过除以零的计算。

# 处理除以零的情况
with np.errstate(divide='ignore', invalid='ignore'):
    img_divide = np.true_divide(img1, img2)
    img_divide[~np.isfinite(img_divide)] = 0  # 将无限或无效值替换为零
axes[4].imshow(img_divide)

plt.show()

np.errstate()上下文管理器来忽略除法操作中的无效值警告,并使用np.true_divide()进行图像的除法操作。然后,通过使用np.isfinite()函数找到无限或无效值,并将它们替换为零。

这样修改后,应该能够避免除以零的错误并正常显示图像。
我在Vscode学OpenCV 基本的加法运算,OpenCV,opencv,人工智能,计算机视觉

3.3 综合说明加法

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

img1=np.random.randint(0,256,size=[3,3],dtype=np.uint8)
img2=np.random.randint(0,256,size=[3,3],dtype=np.uint8)
print("+")
print("img1=\n" ,img1)
print("img2=\n",img2)

print("img1+img2=\n",img1+img2)

print("\ncv2.add")
print("cv.add(img1,img2)=\n",cv.add(img1,img2))

print("cv.add(1,img2)=\n",cv.add(1,img2))

三次运行的对比:
我在Vscode学OpenCV 基本的加法运算,OpenCV,opencv,人工智能,计算机视觉

当使用加号运算符进行图像像素值相加时,如果和大于255(图像最大像素值),则会对结果进行取模处理。这可能导致本应更亮的像素变暗,因为对于超出255的像素,取模后的值会重新从较小的范围开始。

而使用cv2.add()函数计算图像像素值的和时,将和大于255的值截断为饱和值255。这种饱和操作使得图像像素值增大,整体上图像会变得更亮。

选择使用哪种方法取决于具体的需求和预期效果。如果希望保留图像的动态范围,可以使用加号运算符;如果想要增强图像的亮度,可以使用cv2.add()函数。

3.4 目前遇见函数再熟悉

(1)fig, axes = plt.subplots(nrows=1, ncols=5, figsize=(10, 8), dpi=100)*

该函数的作用是创建一个包含多个子图的图像,并返回一个包含子图的figure对象和一个包含每个子图的axes对象的numpy数组。

参数的作用如下:

  • nrows:指定子图的行数。
  • ncols:指定子图的列数。
  • figsize:指定figure的宽度和高度。
  • dpi:指定图像的分辨率。

fig是一个变量,它接收了函数plt.subplots的返回值,即包含子图的figure对象。你可以使用fig变量来对整个图像进行进一步的操作,例如保存图像、设置标题等。
axes是用于绘制子图的对象,可以在一个figure对象中包含多个axes对象来绘制不同的子图。axes的个数没有特定限制,可以根据需要添加任意数量的子图。

将排列方式更改为5行,每一行一个子图,可以调整 plt.subplots() 函数的 nrows 参数为 5, ncols 参数为 1。


# 创建一个具有5行1列的axes子图网格 fig, axes = plt.subplots(nrows=5, ncols=1)

# 在每个子图中绘制不同的内容 axes[0].plot([1, 2, 3], [4, 5, 6]) axes[1].scatter([1, 2, 3], [4, 5, 6]) axes[2].bar([1, 2, 3], [4, 5, 6]) axes[3].hist([1,
2, 3]) axes[4].plot([3, 2, 1], [6, 5, 4])

# 调整子图的间距 plt.tight_layout()

# 显示图像 plt.show() ```

在这个示例中,我们在每个子图中绘制了不同类型的图表,例如折线图、散点图、柱状图和直方图。要访问每个子图,可以使用 `axes`
对象和索引。最后,我们使用 `plt.tight_layout()` 函数来调整子图的间距,以便更好地展示各个子图。
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

# 1 读取图像
img1 = cv.imread("./Pic/test_img.jpg")
img2 = cv.imread("./Pic/test_img.jpg")

# 2 加法操作
img3 = cv.add(img1,img2) # cv中的加法
img4 = img1+img2 # 直接相加

# 3 图像显示
fig, axes = plt.subplots(nrows=5, ncols=1, figsize=(10, 8), dpi=100)
axes[0].imshow(img3[:, :, ::-1])
axes[0].set_title("cv中的加法")
axes[1].imshow(img4[:, :, ::-1])
axes[1].set_title("直接相加")
axes[2].imshow(img1 - img2)
axes[3].imshow(img1 * img2)

# 处理除以零的情况
with np.errstate(divide='ignore', invalid='ignore'):
    img_divide = np.true_divide(img1, img2)
    img_divide[~np.isfinite(img_divide)] = 0  # 将无限或无效值替换为零
axes[4].imshow(img_divide)



plt.show()

我在Vscode学OpenCV 基本的加法运算,OpenCV,opencv,人工智能,计算机视觉

避免:

个数不匹配
我在Vscode学OpenCV 基本的加法运算,OpenCV,opencv,人工智能,计算机视觉

(2)# 用shape()属性

# 用shape()属性
# shape[0]是宽度
# shape[1]是高度
# shape[2]是通道数(深度)
newimg.size #  print(1280*1706*3) 

newimg.shape # (1280, 1706, 3)

在Python中,shape()是一个NumPy数组对象的方法,可以用于获取数组的形状信息。因此,如果你将图像数据转换为NumPy数组,就可以使用shape()函数来获取其形状信息。

示例代码如下:

import numpy as np
from PIL import Image

# 加载图像
img = Image.open('image.jpg')

# 将图像转换为NumPy数组
img_array = np.array(img)

# 获取图像数组的形状信息
img_shape = img_array.shape

# 打印图像数组的形状信息
print(img_shape)

这样,你就可以通过shape()函数获得图像数组的形状信息,其中==img_shape将是一个元组==,包含图像的宽度、高度和通道数。

解释

我在Vscode学OpenCV 基本的加法运算,OpenCV,opencv,人工智能,计算机视觉
\
我在Vscode学OpenCV 基本的加法运算,OpenCV,opencv,人工智能,计算机视觉
\
我在Vscode学OpenCV 基本的加法运算,OpenCV,opencv,人工智能,计算机视觉
\

  >>> x = np.array([1, 2, 3, 4])
    >>> x.shape
    (4,)
    >>> y = np.zeros((2, 3, 4))
    >>> y.shape
    (2, 3, 4)
    >>> y.shape = (3, 8)
    >>> y
    array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])
    >>> y.shape = (3, 6)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    ValueError: total size of new array must be unchanged
    >>> np.zeros((4,2))[::2].shape = (-1,)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    AttributeError: Incompatible shape for in-place modification. Use
    `.reshape()` to make a copy with the desired shape.
  1. 首先,创建一个包含四个元素的一维数组x,然后通过x.shape获取其形状,结果是(4,),表示这是一个长度为4的一维数组。

  2. 接着,创建一个由0填充的三维数组y,其形状是(2, 3, 4),表示这是一个2x3x4的三维数组。

  3. 使用y.shape = (3, 8),将y的形状更改为(3, 8),这意味着它现在是一个3x8的三维数组。原始数据保持不变,但形状改变了。

  4. 接下来,尝试将y的形状更改为(3, 6),但这会引发一个ValueError,因为新的形状要求数组的总大小必须保持不变。在这种情况下,新形状(3, 6)的总大小(18)与原始形状(3, 8)的总大小(24)不同,所以抛出了异常。

  5. 最后一个示例尝试将形状应用于使用切片的数组np.zeros((4, 2))[::2],它会引发AttributeError,因为这种情况下的切片不允许原地修改形状。提示建议使用.reshape()方法,以便创建一个具有所需形状的副本。

总之,shape属性允许你更改NumPy数组的形状,但要确保新形状的总大小与原始形状的总大小一致。如果无法在原地修改形状,则需要使用.reshape()方法来创建一个新数组。

(3)size

我在Vscode学OpenCV 基本的加法运算,OpenCV,opencv,人工智能,计算机视觉

dyte我在Vscode学OpenCV 基本的加法运算,OpenCV,opencv,人工智能,计算机视觉

**文章来源地址https://www.toymoban.com/news/detail-745752.html

到了这里,关于我在Vscode学OpenCV 基本的加法运算的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • C++结合OpenCV:图像的加法运算

    一、图像运算 针对图像的加法运算、位运算都是比较基础的运算。但是,很多复杂的图像处理功能正是借助这些基础的运算来完成的。所以,牢固掌握基础操作,对于更好地实现图像处理是非常有帮助的。本章简单介绍了加法运算、位运算,并使用它们实现了位平面分解、图

    2024年01月18日
    浏览(44)
  • 我在Vscode学OpenCV 图像处理二(滤除噪声干扰)

    图像平滑处理是一种用于减少图像噪声并模糊图像的技术,使图像更加清晰或者更容易进行其他图像处理操作的方法之一。 图像平滑处理的目标之一就是消除或减少这些噪声,使图像更清晰、更易于分析或更适合后续处理。不同的平滑技术可以在一定程度上模糊图像,从而有

    2024年02月05日
    浏览(44)
  • 我在Vscode学OpenCV 图像处理五(直方图处理)

    直方图是一种统计图,显示了图像中每个灰度级别(或颜色通道)的像素数量。通过分析图像的直方图,可以获得关于图像对比度、亮度和颜色分布等方面的重要信息。 了解图像的对比度、亮度和色彩分布等信息。你可以使用OpenCV中的函数来计算和绘制图像的直方图,从而进

    2024年01月21日
    浏览(75)
  • 我在Vscode学OpenCV 几何变换(缩放、翻转、仿射变换、透视、重映射)

    几何变换指的是将一幅图像映射到另一幅图像内的操作。 cv2.warpAffine :使用仿射变换矩阵对图像进行变换,可以实现平移、缩放和旋转等操作。 cv2.warpPerspective :使用透视变换矩阵对图像进行透视变换,可以实现镜头校正、图像纠偏等操作。 cv2.getAffineTransform :计算仿射变换

    2024年02月05日
    浏览(56)
  • 我在Vscode学OpenCV 图像处理四(轮廓查找 cv2.findContours() cv2.drawContours())-- 待补充

    在OpenCV中,边缘检测和轮廓查找是两个不同的图像处理任务,它们有不同的目标和应用。 1.1.1 边缘检测: 定义: 边缘检测是指寻找图像中灰度级别变化明显的地方,即图像中物体之间的界限。这些变化通常表示图像中的边缘或轮廓。 方法: 常用的边缘检测算法包括Sobel、

    2024年02月03日
    浏览(56)
  • 我在Vscode学OpenCV 图像处理三(图像梯度--边缘检测【图像梯度、Sobel 算子、 Scharr 算子、 Laplacian 算子、Canny 边缘检测】)

    这里需要区分开边缘检测和轮廓检测 边缘检测并非万能,边缘检测虽然能够检测出边缘,但边缘是不连续的,检测到的边缘并不是一个整体。图像轮廓是指将边缘连接起来形成的一个整体,用于后续的计算。 OpenCV 提供了查找图像轮廓的函数 cv2.findContours(),该函数能够查找图

    2024年02月04日
    浏览(56)
  • Opencv+Python笔记(三)图像的基本运算

    1.图像的加法运算 两种加法 使用OpenCv的cv.add()函数将两幅图像简单相加(饱和操作 若结果大于255 则取255) Opencv API: 输入:src1 src2:需要相加的两张图片;dst:相加后的输出图像(可省略);mask:掩码矩阵(可省略),mask 是一个8位的单通道图像,它指定了目标图像哪些元素会被

    2023年04月22日
    浏览(30)
  • 我在VScode学Python(Python的基本了解,数据类型,控制语句,文件File)

    开始学习Python了 1)语言的发展: 是完全面向对象的语言,解释性的语言。可以通过C/C++调用的语言本身也是由诸多其他语言发展而来包括 ABC、Modula-3、C、C++、Algol-68、SmallTalk、Unix shell 和其他的脚本语言等等。 2)特点: 软件开发更加快速和令人愉快。 简洁性、易读性以及

    2023年04月22日
    浏览(48)
  • 【Python/Opencv】图像权重加法函数:cv2.addWeighted()详解

    在OpenCV图像加法cv2.add函数详解详细介绍了图像的加法运算。 除了这种加法外,OpenCV还提供了带权重的加法,即两副图像的像素通道值相加时各自按一定的权重比例取值来相加。 假设有2个图像矩阵src1和src2,在两个图像融合时,各自的权重分别为alpha和beta,则二者融合后的目

    2024年02月15日
    浏览(84)
  • OpenCV 笔记(4):图像的算术运算、逻辑运算

    图像的本质是一个矩阵,所以可以对它进行一些常见的算术运算,例如加、减、乘、除、平方根、对数、绝对值等等。除此之外,还可以对图像进行逻辑运算和几何变换。 我们先从简单的图像加、减、逻辑运算开始介绍。后续会有专门的内容介绍图像的几何变换等。 图像的

    2024年02月06日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包