在 CelebA 数据集上训练的 PyTorch 中的基本变分自动编码器

这篇具有很好参考价值的文章主要介绍了在 CelebA 数据集上训练的 PyTorch 中的基本变分自动编码器。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在 CelebA 数据集上训练的 PyTorch 中的基本变分自动编码器,pytorch,人工智能,人工智能,机器学习
摩西·西珀博士

一、说明

        我最近发现自己需要一种方法将图像编码到潜在嵌入中,调整嵌入,然后生成新图像。有一些强大的方法可以创建嵌入从嵌入生成。如果你想同时做到这两点,一种自然且相当简单的方法是使用变分自动编码器。文章来源地址https://www.toymoban.com/news/detail-745778.html

到了这里,关于在 CelebA 数据集上训练的 PyTorch 中的基本变分自动编码器的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • DHVT:在小数据集上降低VIT与卷积神经网络之间差距,解决从零开始训练的问题

    VIT在归纳偏置方面存在空间相关性和信道表示的多样性两大缺陷。所以论文提出了动态混合视觉变压器(DHVT)来增强这两种感应偏差。 在空间方面,采用混合结构,将卷积集成到补丁嵌入和多层感知器模块中,迫使模型捕获令牌特征及其相邻特征。 在信道方面,引入了MLP中的

    2024年02月08日
    浏览(41)
  • 【模型加速部署】—— Pytorch自动混合精度训练

    torch. amp为混合精度提供了方便的方法,其中一些操作使用torch.float32(浮点)数据类型,而其他操作使用精度较低的浮点数据类型(lower_precision_fp):torch.float16(half)或torch.bfloat16。一些操作,如线性层和卷积,在lower_precision_fp中要快得多。其他操作,如缩减,通常需要float32的

    2024年02月13日
    浏览(27)
  • PyTorch 中的多 GPU 训练和梯度累积作为替代方案

    动动发财的小手,点个赞吧! 在 本文 [1] 中,我们将首先了解数据并行(DP)和分布式数据并行(DDP)算法之间的差异,然后我们将解释什么是梯度累积(GA),最后展示 DDP 和 GA 在 PyTorch 中的实现方式以及它们如何导致相同的结果。 训练深度神经网络 (DNN) 时,一个重要的超

    2024年02月14日
    浏览(36)
  • PyTorch中的优化器探秘:加速模型训练的关键武器

    ❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈 (封面图由文心一格生成) 在机器学习和深度学习中,优化器是训练模型不

    2024年02月02日
    浏览(75)
  • 变分自编码器(VAE)PyTorch Lightning 实现

    ✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。 🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。 变分自编码器 (Variational Autoencoder,VAE)是一

    2024年02月21日
    浏览(50)
  • 【分布式训练】基于Pytorch的分布式数据并行训练

    简介: 在PyTorch中使用DistributedDataParallel进行多GPU分布式模型训练 加速神经网络训练的最简单方法是使用GPU,它在神经网络中常见的计算类型(矩阵乘法和加法)上提供了比CPU更大的加速。随着模型或数据集变得越来越大,一个GPU很快就会变得不足。例如,像BERT和GPT-2这样的

    2024年02月17日
    浏览(49)
  • Pytorch自定义数据集模型完整训练流程

    我们以kaggle竞赛中的猫狗大战数据集为例搭建Pytorch自定义数据集模型训练的完整流程。 Cats vs. Dogs(猫狗大战)数据集是Kaggle大数据竞赛某一年的一道赛题,利用给定的数据集,用算法实现猫和狗的识别。 其中包含了训练集和测试集,训练集中猫和狗的图片数量都是12500张且

    2023年04月24日
    浏览(33)
  • Pytorch目标分类深度学习自定义数据集训练

    目录 一,Pytorch简介; 二,环境配置; 三,自定义数据集; 四,模型训练; 五,模型验证;         PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。PyTorch 基于 Python: PyTorch 以 Python 为中心或“pythonic”,旨在深度集成 Python 代码,而不是

    2024年02月07日
    浏览(56)
  • 【pytorch】如何用自有数据集训练3D gaussian

    已有场景数据: videos中含34个不同视角拍摄的同一动作视频 cams中为34个不同视角对应的相机参数:内外参+焦距 如何利用动态视频 完成用于处理静态场景的3D gaussian? 每个视角的对应帧 - 合成一个文件夹 即34张图片 34个视角 暴力做法:单目视频 看上去第一种比较靠谱一点,

    2024年03月17日
    浏览(68)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包