【虹科干货】Lambda数据架构和Kappa数据架构——构建现代数据架构

这篇具有很好参考价值的文章主要介绍了【虹科干货】Lambda数据架构和Kappa数据架构——构建现代数据架构。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

如何更好地构建我们的数据处理架构,如何IT系统中的遗留问题进行现代化改造并将其转变为现代数据架构?该怎么为你的需求匹配最适合的架构设计呢,本文将分析两种最流行的基于速度的数据架构,为你提供一些思路。

文章速览:

  • 什么是数据架构?
  • 基于速度的数据架构
  • 结语

 

一、什么是数据架构?

数据架构是企业架构中的一个元素,继承了企业架构的主要属性:流程、策略、变更管理和评估权衡。根据Open Group架构框架,数据架构是对“企业主要数据类型、来源、逻辑数据资产、物理数据资产和数据管理资源的结构和交互” 的描述。

根据数据管理知识体系,数据架构是“识别企业的数据需求(无论结构如何)并设计和维护核心蓝图以满足这些需求”的过程。它使用核心蓝图来指导数据集成、控制数据资产并使数据投资与业务战略保持一致。

然而,糟糕的数据架构是僵化且过度集中的。它使用了错误的工具来完成工作,这阻碍了开发和变更管理。

二、基于速度的数据架构

数据速度是指数据生成的速度、数据移动的速度以及将其处理为可用指导的速度。 

根据处理数据的速度,数据架构通常分为两类:Lambda和Kappa。

(一)Lambda数据架构

1、什么是Lambda

Lambda数据架构由Apache Storm的创建者Nathan Marz于 2011 年开发,旨在解决大规模实时数据处理的挑战。术语 Lambda 源自lambda演算 (λ),描述了在多个节点上并行运行分布式计算的函数。Lambda数据架构提供了一个可扩展、容错且灵活的系统来处理大量数据。它允许以混合方式访问批处理和流处理方法。 

 

2Lambda架构的使用场景

1当您有各种工作负载和速度要求时,Lambda架构是理想的选择。由于它可以处理大量数据并提供低延迟查询结果,因此适合仪表板和报告等实时分析应用程序Lambda架构对于批处理(清理、转换、数据聚合)、流处理任务(事件处理、开发机器学习模型、异常检测、欺诈预防)以及构建集中存储库(称为“数据湖”)非常有用。

2Lambda架构的关键区别在于,它使用两个独立的处理系统来处理不同类型的数据处理工作负载。第一个是批处理系统,它将结果存储在集中式数据存储(例如数据仓库或数据湖)中。第二个系统是流处理系统,它在数据到达时实时处理数据并将结果存储在分布式数据存储中。

 

3Lambda架构的组成

Lambda架构由摄取层、批处理层、速度层(或流层)和服务层组成。

  • 批处理层:批处理层处理大量历史数据并将结果存储在集中式数据存储中,例如数据仓库或分布式文件系统。该层使用Hadoop或Spark等框架进行高效的数据处理,使其能够提供所有可用数据的总体视图。
  • 速度层:速度层处理高速数据流,并使用Apache FlinkApache Storm等事件处理引擎提供最新的信息视图。该层处理传入的实时数据并将结果存储在分布式数据存储中,例如消息队列或NoSQL数据库。
  • 服务层:无论底层处理系统如何,Lambda架构服务层对于为用户提供一致的数据访问体验至关重要。它在支持需要快速访问当前信息(例如仪表板和分析)的实时应用程序方面发挥着重要作用。

 

4Lambda架构的优势

Lambda架构解决了计算任意函数的问题,系统必须评估任何给定输入的数据处理函数(无论是慢动作还是实时)。此外,它还提供容错功能,确保在一个系统出现故障或不可用时,任一系统的结果都可以用作另一个系统的输入。在高吞吐量、低延迟和近实时应用程序中这种架构的效率是很明显的

 

【虹科干货】Lambda数据架构和Kappa数据架构——构建现代数据架构

 Lambda架构示意图

 

5Lambda架构的缺点

Lambda架构提供了许多优势,例如可扩展性、容错性以及处理各种数据处理工作负载(批处理和流)的灵活性。但它也有缺点:

  • Lambda架构很复杂,它使用多种技术堆栈来处理和存储数据。
  • 设置和维护可能具有挑战性,尤其是在资源有限的组织中。
  • 每个阶段的批处理和速度层中都会重复底层逻辑。这种重复有一个代价:数据差异。因为尽管具有相同的逻辑,但一层与另一层的实现不同。因此,错误/错误的概率较高,并且您可能会遇到批处理层和速度层的不同结果。

 

(二)Kappa数据架构

2014年,Jay Kreps指出了Lambda架构的一些缺点。这次讨论使大数据社区找到了一种使用更少代码资源的替代方案——Kappa数据架构。

1、什么是Kappa数据架构

Kappa(以希腊字母 ϰ 命名,在数学中用于表示循环)背后的主要思想是单个技术堆栈可用于实时和批量数据处理。该名称反映了该体系结构对连续数据处理或再处理的重视,而不是基于批处理的方法。 

Kappa 的核心依赖于流式架构。传入数据首先存储在事件流日志中。然后,它由流处理引擎(例如 Kafka)连续实时处理或摄取到另一个分析数据库或业务应用程序中。这样做需要使用各种通信范例,例如实时、近实时、批处理、微批处理和请求响应等。

 

2Kappa数据架构的组成

数据重新处理是 Kappa的一项关键要求,使源端的任何更改对结果的影响可见。因此,Kappa 架构仅由两层组成:流处理层和服务层。

Kappa架构中,只有一层处理层:流处理层。该层负责采集、处理和存储直播数据。这种方法消除了对批处理系统的需要。相反,它使用先进的流处理引擎(例如 Apache Flink、Apache Storm、Apache Kafka 或 Apache Kinesis)来处理大量数据流并提供对查询结果的快速、可靠的访问。

流处理层有两个组件:

  • 摄取组件:该层从各种来源收集传入数据,例如日志、数据库事务、传感器和 API。数据被实时摄取并存储在分布式数据存储中,例如消息队列或NoSQL数据库。
  • 处理组件:该组件处理大量数据流并提供对查询结果的快速可靠的访问。它使用事件处理引擎(例如 Apache Flink 或 Apache Storm)来实时处理传入数据和历史数据(来自存储区域),然后将信息存储到分布式数据存储中。

对于几乎所有用例,实时数据都胜过非实时数据。尽管如此,Kappa架构不应该被视为 Lambda 架构的替代品。反之,在不需要批处理层的高性能来满足标准服务质量的情况下,您应该考虑 Kappa架构。

 

3Kappa架构的优势

Kappa架构旨在提供可扩展、容错且灵活的系统,用于实时处理大量数据。它使用单一技术堆栈来处理实时和历史工作负载,并将所有内容视为流。Kappa 架构的主要动机是避免为批处理层和速度层维护两个独立的代码库(管道)。这使得它能够提供更加精简的数据处理管道,同时仍然提供对查询结果的快速可靠访问。

 

【虹科干货】Lambda数据架构和Kappa数据架构——构建现代数据架构

 Kappa架构示意图

 

4Kappa架构的缺点

Kappa架构承诺可扩展性、容错性和简化的管理。然而,它也有缺点。

  • Kappa架构理论上比 Lambda更简单,但对于不熟悉流处理框架的企业来说,技术上仍然可能很复杂。 
  • 扩展事件流平台时的基础设施成本。在事件流平台中存储大量数据可能成本高昂,并会引发其他可扩展性问题,尤其是当数据量达到TB或PB级时 
  • 事件时间和处理时间之间的滞后不可避免地会产生数据延迟。因此,Kappa 架构需要一套机制来解决这个问题,例如水印、状态管理、重新处理或回填。

 

(三)探索数据流模型

1、为什么会出现数据流模型

Lambda和Kappa试图通过集成本质上不兼容的复杂工具来克服2010年代Hadoop生态系统的缺点。这两种方法都难以解决协调批处理和流数据的根本挑战。然而,Lambda和Kappa 为进一步的改进提供了灵感和基础。

统一多个代码路径是管理批处理和流处理的一项重大挑战。即使有了Kappa架构的统一队列和存储层,开发人员也需要使用不同的工具来收集实时统计数据并运行批量聚合作业。今天,他们正在努力应对这一挑战。

 

2、什么是数据流模型

数据流模型的基本前提是将所有数据视为事件并在不同类型的窗口上执行聚合。实时事件流是无界数据,而批量数据是具有自然窗口的有界事件流。

 

【虹科干货】Lambda数据架构和Kappa数据架构——构建现代数据架构

窗口模式示意图

 

数据工程师可以选择不同的窗口,例如滑动窗口或会话窗口,以进行实时聚合。数据流模型允许使用几乎相同的代码在同一系统内进行实时和批处理。

“批处理作为流处理的一个特例”的想法已经变得越来越普遍,Flink和Spark等框架也采用了类似的方法。

 

结语

当然,关于速度模型的数据架构讨论还有另一个用处:适合物联网 (IoT) 的设计选择,在本篇文章中,我们就不再赘述。如何最好地构建我们处理数据的架构,如何对僵化且缓慢的IT遗留系统,进行现代化改造并将其转变为现代数据架构,显然,关于这个问题还尚未有定论。欢迎与我们共同探讨。文章来源地址https://www.toymoban.com/news/detail-746070.html

到了这里,关于【虹科干货】Lambda数据架构和Kappa数据架构——构建现代数据架构的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【虹科干货】如何构建弹性、高可用的微服务?

    基于微服务的应用程序可实现战略性数字转型和云迁移计划,对于开发团队来说,这种架构十分重要。那么,如何来构建弹性、高可用的微服务呢? Redis Enterprise 给出了一个完美的方案。   文况速览:   什么是微服务架构? 为什么微服务很重要? Redis Enterprise :微服务的完美

    2024年02月05日
    浏览(62)
  • 【虹科干货】逻辑数据库可能已经无法满足需求了!

    不可否认,单个Redis实例已经不能满足实际生产中的需求了。为了解决由此带来的问题,何不试试用专用实例代替逻辑数据库呢? 一、逻辑数据库可能已经无法满足需求的4个迹象 1.您有个“吵闹的邻居” PS:“吵闹的邻居”指同一个Redis OSS实例中其它繁忙的逻辑数据库。

    2024年02月07日
    浏览(52)
  • 【虹科干货】Redis Enterprise 自动分层技术:大数据集高性能解决方案

    越来越多的应用程序依赖于庞大的数据集合,而这些应用程序必须快速响应。 借助自动分层,Redis Enterprise 7.2 帮助开发人员轻松 创建超快的应用程序。何乐而不为?   Redis 将数据存储在内存中,因此应用程序能以最快的速度检索和处理数据。 然而,随着 应用程序需要处理

    2024年02月05日
    浏览(43)
  • 为Android构建现代应用——应用架构

    选择风格( Choosing a style ) 我们将依照Google在《应用架构指南》中推荐的最佳实践和架构指南来构建OrderNow的架构。 这些定义包括通过各层定义组件的一些Clean Architecture原则。 层次的定义( Definition of the layers ) 在应用程序中,我们将定义以下主要层次: • 用户界面(UI)层 •

    2024年02月15日
    浏览(41)
  • 中间件:构建现代软件架构的桥梁

            在当今快速发展的科技领域中,软件系统的复杂性不断增加。为了应对这一挑战,中间件应运而生,成为连接和协调不同软件组件的不可或缺的桥梁。本文将深入探讨中间件的基本概念、作用以及一些常见的中间件类型。         中间件 是指介于操作系统和应

    2024年01月23日
    浏览(50)
  • 构建现代应用:Java中的热门架构概览

    🎉欢迎来到Java学习路线专栏~构建现代应用:Java中的热门架构概览 ☆* o(≧▽≦)o *☆嗨~我是IT·陈寒🍹 ✨博客主页:IT·陈寒的博客 🎈该系列文章专栏:Java学习路线 📜其他专栏:Java学习路线 Java面试技巧 Java实战项目 AIGC人工智能 数据结构学习 🍹文章作者技术和水平有限

    2024年02月10日
    浏览(43)
  • JAMstack架构:快速构建安全、高性能的现代应用

    随着Web应用的快速发展,开发者们在寻找更加高效、安全和可维护的应用架构。JAMstack架构应运而生,它通过将前端、后端和部署过程分离,提供了一种现代化的方式来构建Web应用。在本文中,我们将深入探讨JAMstack架构的特点、优势以及使用场景。 什么是 JAMstack 架构? JA

    2024年02月11日
    浏览(44)
  • React前端开发架构:构建现代响应式用户界面

    在当今的Web应用开发中,React已经成为最受欢迎的前端框架之一。 它的出色性能、灵活性和组件化开发模式,使得它成为构建现代响应式用户界面的理想选择。在这篇文章中,我们将探讨React前端开发架构的核心概念和最佳实践,以帮助您构建出色的Web应用。 组件化开发:构

    2024年02月12日
    浏览(57)
  • 构建现代应用程序:区块链和加密货币架构

    作者:禅与计算机程序设计艺术 本文是结合互联网和金融领域相关的专业背景知识,对比分析区块链和加密货币技术在不同场景下的应用以及优劣势,从而阐述如何构建现代应用程序。我们将阐述以下几个方面: 1)什么是区块链和加密货币? 2)区块链和加密货币的特点、

    2024年02月14日
    浏览(37)
  • 说说Kappa架构

    对于实时数仓而言,Lmabda架构有很明显的不足,首先同时维护两套系统,资源占用率高,其次这两套系统的数据处理逻辑相同,代码重复开发。 能否有一种架构,只需要维护一套系统,就可以同时完成流处理、批处理任务呢?当然,那就是Kappa架构。 Kappa架构 Kappa架构是真正

    2024年02月10日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包