🔥🔥探索人工智能的世界:构建智能问答系统之实战篇

这篇具有很好参考价值的文章主要介绍了🔥🔥探索人工智能的世界:构建智能问答系统之实战篇。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

引言

前面我们已经做好了必要的准备工作,包括对相关知识点的了解以及环境的安装。今天我们将重点关注代码方面的内容。如果你已经具备了Java编程基础,那么理解Python语法应该不会成为问题,毕竟只是语法的差异而已。随着时间的推移,你自然会逐渐熟悉和掌握这门语言。现在让我们开始吧!

环境安装命令

在使用之前,我们需要先进行一些必要的准备工作,其中包括执行一些命令。如果你已经仔细阅读了Milvus的官方文档,你应该已经了解到了这一点。下面是需要执行的一些命令示例:

pip3 install langchain

pip3 install openai

pip3 install protobuf==3.20.0

pip3 install grpcio-tools

python3 -m pip install pymilvus==2.3.2

python3 -c "from pymilvus import Collection"

快速入门

现在,我们来尝试使用官方示例,看看在没有集成LangChain的情况下,我们需要编写多少代码才能完成插入、查询等操作。官方示例已经在前面的注释中详细讲解了所有的流程。总体流程如下:

  1. 连接到数据库
  2. 创建集合(这里还有分区的概念,我们不深入讨论)
  3. 插入向量数据(我看官方文档就简单插入了一些数字...)
  4. 创建索引(根据官方文档的说法,通常在一定数据量下是不会经常创建索引的)
  5. 查询数据
  6. 删除数据
  7. 断开与数据库的连接

通过以上步骤,你会发现与连接MySQL数据库的操作非常相似。

# hello_milvus.py demonstrates the basic operations of PyMilvus, a Python SDK of Milvus.
# 1. connect to Milvus
# 2. create collection
# 3. insert data
# 4. create index
# 5. search, query, and hybrid search on entities
# 6. delete entities by PK
# 7. drop collection
import time

import numpy as np
from pymilvus import (
    connections,
    utility,
    FieldSchema, CollectionSchema, DataType,
    Collection,
)

fmt = "\n=== {:30} ===\n"
search_latency_fmt = "search latency = {:.4f}s"
num_entities, dim = 3000, 8

#################################################################################
# 1. connect to Milvus
# Add a new connection alias `default` for Milvus server in `localhost:19530`
# Actually the "default" alias is a buildin in PyMilvus.
# If the address of Milvus is the same as `localhost:19530`, you can omit all
# parameters and call the method as: `connections.connect()`.
#
# Note: the `using` parameter of the following methods is default to "default".
print(fmt.format("start connecting to Milvus"))
connections.connect("default", host="localhost", port="19530")

has = utility.has_collection("hello_milvus")
print(f"Does collection hello_milvus exist in Milvus: {has}")

#################################################################################
# 2. create collection
# We're going to create a collection with 3 fields.
# +-+------------+------------+------------------+------------------------------+
# | | field name | field type | other attributes |       field description      |
# +-+------------+------------+------------------+------------------------------+
# |1|    "pk"    |   VarChar  |  is_primary=True |      "primary field"         |
# | |            |            |   auto_id=False  |                              |
# +-+------------+------------+------------------+------------------------------+
# |2|  "random"  |    Double  |                  |      "a double field"        |
# +-+------------+------------+------------------+------------------------------+
# |3|"embeddings"| FloatVector|     dim=8        |  "float vector with dim 8"   |
# +-+------------+------------+------------------+------------------------------+
fields = [
    FieldSchema(name="pk", dtype=DataType.VARCHAR, is_primary=True, auto_id=False, max_length=100),
    FieldSchema(name="random", dtype=DataType.DOUBLE),
    FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)
]

schema = CollectionSchema(fields, "hello_milvus is the simplest demo to introduce the APIs")

print(fmt.format("Create collection `hello_milvus`"))
hello_milvus = Collection("hello_milvus", schema, consistency_level="Strong")

################################################################################
# 3. insert data
# We are going to insert 3000 rows of data into `hello_milvus`
# Data to be inserted must be organized in fields.
#
# The insert() method returns:
# - either automatically generated primary keys by Milvus if auto_id=True in the schema;
# - or the existing primary key field from the entities if auto_id=False in the schema.

print(fmt.format("Start inserting entities"))
rng = np.random.default_rng(seed=19530)
entities = [
    # provide the pk field because `auto_id` is set to False
    [str(i) for i in range(num_entities)],
    rng.random(num_entities).tolist(),  # field random, only supports list
    rng.random((num_entities, dim)),  # field embeddings, supports numpy.ndarray and list
]

insert_result = hello_milvus.insert(entities)

hello_milvus.flush()
print(f"Number of entities in Milvus: {hello_milvus.num_entities}")  # check the num_entities

################################################################################
# 4. create index
# We are going to create an IVF_FLAT index for hello_milvus collection.
# create_index() can only be applied to `FloatVector` and `BinaryVector` fields.
print(fmt.format("Start Creating index IVF_FLAT"))
index = {
    "index_type": "IVF_FLAT",
    "metric_type": "L2",
    "params": {"nlist": 128},
}

hello_milvus.create_index("embeddings", index)

################################################################################
# 5. search, query, and hybrid search
# After data were inserted into Milvus and indexed, you can perform:
# - search based on vector similarity
# - query based on scalar filtering(boolean, int, etc.)
# - hybrid search based on vector similarity and scalar filtering.
#

# Before conducting a search or a query, you need to load the data in `hello_milvus` into memory.
print(fmt.format("Start loading"))
hello_milvus.load()

# -----------------------------------------------------------------------------
# search based on vector similarity
print(fmt.format("Start searching based on vector similarity"))
vectors_to_search = entities[-1][-2:]
search_params = {
    "metric_type": "L2",
    "params": {"nprobe": 10},
}

start_time = time.time()
result = hello_milvus.search(vectors_to_search, "embeddings", search_params, limit=3, output_fields=["random"])
end_time = time.time()

for hits in result:
    for hit in hits:
        print(f"hit: {hit}, random field: {hit.entity.get('random')}")
print(search_latency_fmt.format(end_time - start_time))

# -----------------------------------------------------------------------------
# query based on scalar filtering(boolean, int, etc.)
print(fmt.format("Start querying with `random > 0.5`"))

start_time = time.time()
result = hello_milvus.query(expr="random > 0.5", output_fields=["random", "embeddings"])
end_time = time.time()

print(f"query result:\n-{result[0]}")
print(search_latency_fmt.format(end_time - start_time))

# -----------------------------------------------------------------------------
# pagination
r1 = hello_milvus.query(expr="random > 0.5", limit=4, output_fields=["random"])
r2 = hello_milvus.query(expr="random > 0.5", offset=1, limit=3, output_fields=["random"])
print(f"query pagination(limit=4):\n\t{r1}")
print(f"query pagination(offset=1, limit=3):\n\t{r2}")

# -----------------------------------------------------------------------------
# hybrid search
print(fmt.format("Start hybrid searching with `random > 0.5`"))

start_time = time.time()
result = hello_milvus.search(vectors_to_search, "embeddings", search_params, limit=3, expr="random > 0.5",
                             output_fields=["random"])
end_time = time.time()

for hits in result:
    for hit in hits:
        print(f"hit: {hit}, random field: {hit.entity.get('random')}")
print(search_latency_fmt.format(end_time - start_time))

###############################################################################
# 6. delete entities by PK
# You can delete entities by their PK values using boolean expressions.
ids = insert_result.primary_keys

expr = f'pk in ["{ids[0]}" , "{ids[1]}"]'
print(fmt.format(f"Start deleting with expr `{expr}`"))

result = hello_milvus.query(expr=expr, output_fields=["random", "embeddings"])
print(f"query before delete by expr=`{expr}` -> result: \n-{result[0]}\n-{result[1]}\n")

hello_milvus.delete(expr)

result = hello_milvus.query(expr=expr, output_fields=["random", "embeddings"])
print(f"query after delete by expr=`{expr}` -> result: {result}\n")

###############################################################################
# 7. drop collection
# Finally, drop the hello_milvus collection
print(fmt.format("Drop collection `hello_milvus`"))
utility.drop_collection("hello_milvus")

升级版

现在,让我们来看一下使用LangChain版本的代码。由于我们使用的是封装好的Milvus,所以我们需要一个嵌入模型。在这里,我们选择了HuggingFaceEmbeddings中的sensenova/piccolo-base-zh模型作为示例,当然你也可以选择其他模型,这里没有限制。只要能将其作为一个变量传递给LangChain定义的函数调用即可。

下面是一个简单的示例,包括数据库连接、插入数据、查询以及得分情况的定义:

from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Milvus 


model_name = "sensenova/piccolo-base-zh"
embeddings = HuggingFaceEmbeddings(model_name=model_name) 

print("链接数据库")
vector_db = Milvus(
    embeddings,
    connection_args={"host": "localhost", "port": "19530"},
    collection_name="hello_milvus",
) 
print("简单传入几个值")
vector_db.add_texts(["12345678","789","努力的小雨是一个知名博主,其名下有公众号【灵墨AI探索室】,博客:稀土掘金、博客园、51CTO及腾讯云等","你好啊","我不好"])

print("查询前3个最相似的结果")
docs = vector_db.similarity_search_with_score("你好啊",3)

print("查看其得分情况,分值越低越接近")
for text in docs:
    print('文本:%s,得分:%s'%(text[0].page_content,text[1]))

🔥🔥探索人工智能的世界:构建智能问答系统之实战篇

注意,以上代码只是一个简单示例,具体的实现可能会根据你的具体需求进行调整和优化。

在langchain版本的代码中,如果你想要执行除了自己需要开启docker中的milvus容器之外的操作,还需要确保你拥有网络代理。这里不多赘述,因为HuggingFace社区并不在国内。

个人定制版

接下来,我们将详细了解如何调用openai模型来回答问题!

from dotenv import load_dotenv
from langchain.prompts import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate; 
from langchain import PromptTemplate
from langchain.chains import LLMChain 
from langchain.chat_models.openai import ChatOpenAI 
from langchain.schema import BaseOutputParser

# 加载env环境变量里的key值
load_dotenv()
# 格式化输出
class CommaSeparatedListOutputParser(BaseOutputParser):
    """Parse the output of an LLM call to a comma-separated list."""

    def parse(self, text: str):
        """Parse the output of an LLM call."""
        return text.strip().split(", ")
# 先从数据库查询问题解
docs = vector_db.similarity_search("努力的小雨是谁?")
doc = docs[0].page_content

chat = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0)
template = "请根据我提供的资料回答问题,资料: {input_docs}"
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)

chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])

# chat_prompt.format_messages(input_docs=doc, text="努力的小雨是谁?")
chain = LLMChain(
    llm=chat,
    prompt=chat_prompt,
    output_parser=CommaSeparatedListOutputParser()
)
chain.run(input_docs=doc, text="努力的小雨是谁?") 

当你成功运行完代码后,你将会得到你所期望的答案。如下图所示,这些答案将会展示在你的屏幕上。不然,如果系统不知道这些问题的答案,那它又如何能够给出正确的回答呢?

🔥🔥探索人工智能的世界:构建智能问答系统之实战篇

总结

通过本系列文章的学习,我们已经对个人或企业知识库有了一定的了解。尽管OpenAI已经提供了私有知识库的部署选项,但是其高昂的成本对于一些企业来说可能是难以承受的。无论将来国内企业是否会提供个人或企业知识库的解决方案,我们都需要对其原理有一些了解。无论我们的预算多少,都可以找到适合自己的玩法,因为不同预算的玩法也会有所不同。文章来源地址https://www.toymoban.com/news/detail-746340.html

到了这里,关于🔥🔥探索人工智能的世界:构建智能问答系统之实战篇的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 免费的chartGPT 人工智能机器人问答展示

      无意中发现一个特别好用的AI工具,试着问了几个最近一直困扰我的小孩子的幼小衔接的问题,发现比度娘好用。给出的答案更加智能,还可以免费试用。 对于日常的一些问题,回答更具针对性    日常写代码也能轻松搞定  人工智能是一种让计算机系统具备智能的技术和

    2024年02月07日
    浏览(62)
  • 探索人工智能:深度学习、人工智能安全和人工智能编程(文末送书)

    人工智能知识对于当今的互联网技术人来说已经是刚需。但人工智能的概念、流派、技术纷繁复杂,选择哪本书入门最适合呢? 这部被誉为人工智能“百科全书”的《人工智能(第3版)》,可以作为每个技术人进入 AI 世界的第一本书。 购书链接,限时特惠5折 这本书是美国

    2024年02月03日
    浏览(119)
  • AI眼中的世界 ——人工智能绘画入门

    目录 什么是Disco Diffusion? 如何使用Disco Diffusion? 正文 准备工作 入门教程 开始行动  默认跑一个默认的描述A beautiful painting of a singular lighthouse, shining its light across a tumultuous sea of blood by greg rutkowski and thomas kinkade, Trending on artstation.​编辑  查看云端硬盘 ​编

    2023年04月16日
    浏览(66)
  • 从AI人工智能LLM大型语言模型到通用人工智能AGI “世界模型”的演进路径

    近年来,人工智能技术取得了飞速的发展,各种领域都出现了涉及人工智能的应用。大型语言模型(Large Language Model, LLM)作为其中一种重要的技术手段,已成为当前自然

    2024年02月08日
    浏览(92)
  • 世界人工智能三要素:数据、算力和算法

    随着我国社会经济发展水平的提升,人工智能的技术运用的越来越熟练,智能推送等应用已经悄无声息的渗透到了我们的生活之中,今天我们就来聊一聊,人工智能的三大要素。 1.数据 实现人工智能的首要因素是数据,数据是一切智慧物体的学习资源,没有了数据,任何智慧

    2024年02月13日
    浏览(45)
  • 人工智能图——未来世界的指南针

    人工智能(Artificial Intelligence,AI)作为当今科技领域的重要研究方向之一,正在成为社会、经济、安全和政治等多个领域的核心驱动力。人工智能图作为AI时代的新兴产物,被认为能够成为未来世界的指南针。 一、人工智能图的定义 人工智能图(Artificial Intelligence Image,AII)是指

    2024年02月12日
    浏览(52)
  • 迈向多模态AGI之开放世界目标检测 | 人工智能

    作者: 王斌 谢春宇 冷大炜 引言 目标检测是计算机视觉中的一个非常重要的基础任务,与常见的的图像分类/识别任务不同,目标检测需要模型在给出目标的类别之上,进一步给出目标的位置和大小信息,在CV三大任务(识别、检测、分割)中处于承上启下的关键地位。当前

    2024年02月16日
    浏览(46)
  • 揭秘人工智能:探索智慧未来

    🌈个人主页: 聆风吟 🔥系列专栏: 数据结构、网络奇遇记 🔖少年有梦不应止于心动,更要付诸行动。 人工智能是一种模拟人类智能的技术,目的是让计算机可以像人类一样进行学习、推理、感知、理解和创造等活动。近年来,人工智能技术已经在各个领域取得了显著进

    2024年02月03日
    浏览(98)
  • 【人工智能】大模型的本质是这个世界抽象出来的函数

    模型是机器学习中的一个重要概念,它是指对数据进行学习和预测的数学模型。在机器学习中,模型的本质是函数,本文将从函数的角度出发,对模型的本质进行展开讲解。

    2024年02月06日
    浏览(45)
  • 亚商投资顾问 早餐FM/07062023世界人工智能大会启幕

    01/ 亚商投资顾问 早间导读 1.2023世界人工智能大会今日在沪启幕 2.工信部:加快大数据、人工智能、智能网联汽车等战略性新兴产业创新发展 3.浙江:支持平台企业科技创新 优化人工智能算力平台布局 02/ 亚商投资顾问 新闻早餐 //  热点聚焦  // 1.7月6日,2023世界人工智能大

    2024年02月12日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包