聊聊分布式 SQL 数据库Doris(七)

这篇具有很好参考价值的文章主要介绍了聊聊分布式 SQL 数据库Doris(七)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

LSM-Tree

Doris的存储结构是类似LSM-Tree设计的,因此很多方面都是通用的,先阅读了解LSM相关的知识,再看Doris的底层存储与读取流程会清晰透彻很多,LSM基本知识如下:

原理:把各种数据先用log等形式组织在内存中(该数据结构称为MemTable,且有序);到达一定数据量后再批量merge写入磁盘(该数据结构称为SSTable);为压缩存储,会通过归并排序合并压缩SSTable。LSM主要是利用顺序写要比随机写更快速高效的原理,加上归并排序,合并压缩文件,提供更高效的数据存储与查询支持。

MemTable: 内存里的表,有序且存储在内存Buffer中;用有序数据结构来组织数据,一般是用跳表(SkipList),也可以是有序数组或红黑树等二叉搜索树。

SSTable: Sorted Strings Table; 由MemTable按SSTable文件格式刷入磁盘持久化存储,一般由一组数据block和一组元数据block组成,数据是已序的。元数据block会存储数据block的描述信息,如索引、BloomFilter、压缩、统计等信息;数据block存储数据。可以看作是一个有序的数组或有序链表。

Compaction: 通过归并排序算法,合并压缩SSTable。

LSM(Log-Structured Merge-Tree)是一种在分布式系统中常用的数据结构,用于高效地存储和检索大量数据。它结合了日志结构化(Log-Structured)和归并排序(Merge-Sort)的思想,通过将数据按照键的顺序合并存储,实现了高效的写入和读取操作。
其核心思想在于充分发挥磁盘连续读写的性能优势、以短时间的内存与 IO 的开销换取最大的写入性能,数据以 Append-only 的方式写入 Memtable、达到阈值后冻结 Memtable 并 Flush 为磁盘文件、再结合 Compaction 机制将多个小文件进行多路归并排序形成新的文件,最终实现数据的高效写入。

SSTable文件格式是一个很重要的信息;其包含存储与检索数据的数据结构设计,比如索引值,压缩算法,布隆过滤器等高效的设计。

参考:

LSM 树设计原理

LSM Tree索引:高性能写引擎

索引

官网文档: 索引概述.

Doris内建的索引: 前缀索引(Short key Index)、ZoneMap索引,默认是根据建表时的key列生成的。

Doris 的数据存储在类似 SSTable(Sorted String Table)的数据结构中。该结构是一种有序的数据结构,可以按照指定的列进行排序存储。在这种数据结构上,以排序列作为条件进行查找,会非常的高效。

在 Aggregate、Unique 和 Duplicate 三种数据模型中。底层的数据存储,是按照各自建表语句中,AGGREGATE KEY、UNIQUE KEY 和 DUPLICATE KEY 中指定的列进行排序存储的。因此在此排序列的基础上根据不同的场景构建内置的索引,提高查询的性能与效率。

Duplicate、Aggregate、Unique 模型,都会在建表指定 key 列,然而实际上是有所区别的:对于 Duplicate 模型,表的key列, 可以认为只是 “排序列”,并非起到唯一标识的作用。而 Aggregate、Unique 模型这种聚合类型的表,key 列是兼顾 “排序列” 和 “唯一标识列”,是真正意义上的“ key 列”。

参考:
Apache Doris 索引机制解析
Doris-BE-存储结构设计解析

Join

官网文档: Doris Join 优化原理

概览

Doris 支持两种物理算子,一类是 Hash Join,另一类是 Nest Loop Join。

Doris 支持 4 种数据 Shuffle 方式:

  1. BroadCast Join: 要求把右表全量的数据都发送到左表上,即每一个参与 Join 的节点,它都拥有右表全量的数据

  2. Shuffle Join: 只支持hash join场景(即等值匹配). 当进行 Hash Join 时候,可以通过 Join 列计算对应的 Hash 值,并进行 Hash 分桶,并将分桶后的数据分散到节点中进行计算

  3. Bucket Shuffle Join: 右表数据扫描出来之后进行数据分区的 Hash 计算,根据左表本身的数据分布发送到右表对应的 Join 计算节点上。

  4. Colocation: 导入数据时,提前将join表的数据分散到一个节点

Runtime Filter

Doris 在进行 Hash Join 计算时会在右表构建一个哈希表,左表流式的通过右表的哈希表从而得出 Join 结果。而 RuntimeFilter 就是充分利用了右表的 Hash 表,在右表生成哈希表的时候,同时生成一个基于哈希表数据的一个过滤条件(Filter),然后下推到左表的数据扫描节点,通过这样的方式,左表在运行时(Runtime)提前进行数据过滤,提高查询效率。

Runtime Filter是分布式SQL查询引擎框架通用的一种优化手段,具体可参考: Join优化技术之Runtime Filter.

Runtime Filter涉及到的下推技术同样也是查询引擎框架常用的优化手段; 常见的下推优化技术有:谓词下推, 存储层下推等。

Doris支持的三种类型RuntimeFilter:

  1. IN 的优点是过滤效果明显,且快速。它的缺点首先第一个它只适用于 BroadCast,第二,它右表超过一定数据量的时候就失效了,当前 Doris 目前配置的是1024,即右表如果大于 1024,IN 的 Runtime Filter 就直接失效了,其余的RuntimeFileter则没有限制。
  2. MinMax 的优点是开销比较小。它的缺点就是对数值列还有比较好的效果,但对于非数值列,基本上就没什么效果。
  3. Bloom Filter 的特点就是通用,适用于各种类型、效果也比较好。缺点就是它的配置比较复杂并且计算较高。

使用场景的要求:

  1. 第一个要求就是左表大右表小,因为构建 Runtime Filter是需要承担计算成本的,包括一些内存的开销。
  2. 第二个要求就是左右表 Join 出来的结果很少,说明这个 Join 可以过滤掉左表的绝大部分数据。

Join Reorder

Join Reorder 是指在执行SQL查询时,决定多个表进行 join 的顺序。它是数据库查询优化的一个重要方面,对查询性能和效率有着重要的影响, 不同的 join order 对性能可能有数量级的影响。

从定义来看,其实就是寻找最短路径(最优解)的过程,因此可以从算法的角度考虑,比如动态规划算法与贪心算法;同时也可以基于规则来做。

Doris中Join Reorder的实现是基于规则策略的,其规则定义如下:

  1. 让大表、跟小表尽量做 Join,它生成的中间结果是尽可能小的。
  2. 把有条件的 Join 表往前放,也就是说尽量让有条件的 Join 表进行过滤
  3. Hash Join 的优先级高于 Nest Loop Join,因为 Hash join 本身是比 Nest Loop Join 快很多的。

Join Reorder 也是SQL查询引擎框架通用的一种优化手段, 在PolarDB、TiDB、StarRocks等数据库框架中都有涉及与应用。其实现与说明如下:文章来源地址https://www.toymoban.com/news/detail-747359.html

  1. TiDB Join Reorder 算法简介
  2. StarRocks Join Reorder 源码解析
  3. PolarDB-X 优化器核心技术 ~ Join Reorder

到了这里,关于聊聊分布式 SQL 数据库Doris(七)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 聊聊分布式 SQL 数据库Doris(二)

    Doris中,Leader节点与非Leader节点和Observer节点之间的元数据高可用和一致性,是通过bdbje(全称:Oracle Berkeley DB Java Edition)的一致性和高可用实现的。 元数据与同步流程 元数据主要存储四类数据: 用户数据信息. 包括数据库, 表的schema, 分片信息等 各类作业信息. 如导入作业, clo

    2024年02月05日
    浏览(67)
  • 聊聊分布式 SQL 数据库Doris(六)

    此处的负载均衡指的是FE层的负载均衡. 当部署多个 FE 节点时,用户可以在多个 FE 之上部署负载均衡层来实现 Doris 的高可用。官方文档描述: 负载均衡 。 实现方式 实现方式有多种,如下列举。 开发者在应用层自己进行重试与负载均衡。 JDBC Connector 发现一个连接挂掉,就自

    2024年02月05日
    浏览(53)
  • 聊聊分布式 SQL 数据库Doris(一)

    MPP:Massively Parallel Processing, 即大规模并行处理. 一般用来指多个SQL数据库节点搭建的数据仓库系统. 执行查询的时候, 查询可以分散到多个SQL数据库节点上执行, 然后汇总返回给用户. Doris 作为一款开源的 MPP 架构 OLAP 高性能、实时的分析型数据库,能够运行在绝大多数主流的商

    2024年02月05日
    浏览(45)
  • 聊聊分布式 SQL 数据库Doris(三)

    在 Doris 的存储引擎规则: 表的数据是以分区为单位存储的,不指定分区创建时,默认就一个分区. 用户数据首先被划分成若干个分区(Partition),划分的规则通常是按照用户指定的分区列进行范围划分,比如按时间划分。 在每个分区内,数据被进一步的按照Hash的方式分桶,分

    2024年02月05日
    浏览(55)
  • 分布式数据库Apache Doris简易体验

    📢📢📢📣📣📣 哈喽!大家好,我是【IT邦德】,江湖人称jeames007,10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】!😜😜😜 中国DBA联盟(ACDU)成员,目前服务于工业互联网 擅长主流Oracle、MySQL、PG、高斯及Greenplum运维开发,备份恢复,安装迁移,性能优

    2024年02月06日
    浏览(59)
  • 分布式数据库Apache Doris HA集群部署

    📢📢📢📣📣📣 哈喽!大家好,我是【IT邦德】,江湖人称jeames007,10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】!😜😜😜 中国DBA联盟(ACDU)成员,目前服务于工业互联网 擅长主流Oracle、MySQL、PG、高斯及Greenplum运维开发,备份恢复,安装迁移,性能优

    2024年02月06日
    浏览(53)
  • RisingWave分布式SQL流处理数据库调研

    RisingWave是一款 分布式SQL流处理数据库 ,旨在帮助用户降低实时应用的的开发成本。作为专为云上分布式流处理而设计的系统,RisingWave为用户提供了与PostgreSQL类似的使用体验,官方宣称具备比Flink高出10倍的性能(指throughput)以及更低的成本。RisingWave开发只需要关注SQL开发

    2024年02月21日
    浏览(48)
  • 解释什么是分布式数据库,列举几种常见的分布式数据库系统

    敏感信息和隐私保护是指在收集、存储和使用个人数据时,需要采取一系列措施来保护这些数据的安全和机密性,防止数据被未经授权的第三方访问、使用或泄露。这些措施包括加密、访问控制、数据脱敏、数据加密、隐私政策等。 在隐私保护的技术手段方面,常用的技术包

    2024年02月08日
    浏览(57)
  • 分布式数据库架构

    对于mysql架构,一定会使用到读写分离,在此基础上有五种常见架构设计:一主一从或多从、主主复制、级联复制、主主与级联复制结合。 1.1、主从复制 这种架构设计是使用的最多的。在读写分离的基础上,会存在一台master作为写机,一个或多个slave作为读机。因为在实际的

    2024年02月10日
    浏览(50)
  • 分析型数据库:分布式分析型数据库

    分析型数据库的另外一个发展方向就是以分布式技术来代替MPP的并行计算,一方面分布式技术比MPP有更好的可扩展性,对底层的异构软硬件支持度更好,可以解决MPP数据库的几个关键架构问题。本文介绍分布式分析型数据库。 — 背景介绍— 目前在分布式分析型数据库领域,

    2023年04月14日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包