聊聊分布式 SQL 数据库Doris(九)

这篇具有很好参考价值的文章主要介绍了聊聊分布式 SQL 数据库Doris(九)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

优化器的作用是优化查询语句的执行效率,它通过评估不同的执行计划并选择最优的执行计划来实现这一目标。

CBO: 一种基于成本的优化器,它通过评估不同查询执行计划的成本来选择最优的执行计划。CBO会根据数据库系统定义的统计信息以及其他因素,对不同的执行计划进行评估,并选择成本最低的执行计划。CBO的目标是找到一个最优的执行计划,使得查询的执行成本最低。

RBO: 一种基于规则的优化器,它通过应用一系列的优化规则来选择最优的执行计划。RBO会根据预定义的规则对查询进行优化,这些规则基于数据库系统的特定逻辑和语义。RBO的优点是实现简单,适用于特定的查询模式和数据分布。然而,RBO可能无法找到最优的执行计划,特别是对于复杂的查询和大规模的数据集。

Doris主要整合了Google Mesa(数据模型),Apache Impala(MPP查询引擎)和Apache ORCFile (存储格式,编码和压缩) 的技术。 Doris的查询优化器则是基于Impala改造实现的。Doris官方提供的 Nereids优化器 文档。

优化器组件

查询优化器由多个部分组成,分别是: 词法语法解析、语义解析、query改写、生成执行计划。最后这步根据算法实现与业务场景的不同会有些许差异。

词法语法解析

这个步骤,其实是做两件事情,首先是解析SQL文本,提取关键字出来,比如(select、from等); 然后分析SQL文本是否满足SQL语法,最终生成一个AST树。其结构如下:

对于不同类型的SQL,其语法树的根节点类型也是不一样的。一般是InsertStmt、UpdateStmt、DeleteStmt、SelectStmt等。而这些概念其实是impala中的,Doris的SQL查询引擎是参考自impala。在其源码中有这么一段注释:

Impala是用于处理存储在Hadoop集群中的大量数据的MPP(大规模并行处理)sql查询引擎。 它是一个用C ++和Java编写的开源软件。 与其他Hadoop的SQL引擎相比,它提供了高性能和低延迟。其相关信息及文档可参考: impala中文手册

语义解析

根据AST树与元数据中的表、列信息等做一个语义校验,比如,表、字段是否在元数据中存在。其步骤一般如下:

query改写

对原始的sql文本做一定程度的改写使得SQL更简单,执行效率更高;一般是条件表达式改写、子查询改写等。

在Doris中,有一个接口 ExprRewriteRule 负责表达式的改写规则,基于该接口与各种不同的规则有不同的实现,在 Analyzer类的内部类 GlobalState 构造函数中,注册了诸多的规则到rules集合中,而该list会被传递到ExprRewriter类中被应用。

StmtRewriter 类处理子查询改写逻辑,其中的方法会处理各种场景下的子查询改写,比如rewriteSelectStatement方法.

这一步骤的处理是基于词法语法解析后生成的AST树进行的。

public class GlobalState(Env env, ConnectContext context) {
    this.env = env;
    this.context = context;
    List<ExprRewriteRule> rules = Lists.newArrayList();
    // BetweenPredicates must be rewritten to be executable. Other non-essential
    // expr rewrites can be disabled via a query option. When rewrites are enabled
    // BetweenPredicates should be rewritten first to help trigger other rules.
    rules.add(BetweenToCompoundRule.INSTANCE);
    // Binary predicates must be rewritten to a canonical form for both predicate
    // pushdown and Parquet row group pruning based on min/max statistics.
    rules.add(NormalizeBinaryPredicatesRule.INSTANCE);
    // Put it after NormalizeBinaryPredicatesRule, make sure slotRef is on the left and Literal is on the right.
    rules.add(RewriteBinaryPredicatesRule.INSTANCE);
    rules.add(RewriteImplicitCastRule.INSTANCE);
    rules.add(RoundLiteralInBinaryPredicatesRule.INSTANCE);
    rules.add(FoldConstantsRule.INSTANCE);
    rules.add(EraseRedundantCastExpr.INSTANCE);
    rules.add(RewriteFromUnixTimeRule.INSTANCE);
    rules.add(CompoundPredicateWriteRule.INSTANCE);
    rules.add(RewriteDateLiteralRule.INSTANCE);
    rules.add(RewriteEncryptKeyRule.INSTANCE);
    rules.add(RewriteInPredicateRule.INSTANCE);
    rules.add(RewriteAliasFunctionRule.INSTANCE);
    rules.add(RewriteIsNullIsNotNullRule.INSTANCE);
    rules.add(MatchPredicateRule.INSTANCE);
    rules.add(EliminateUnnecessaryFunctions.INSTANCE);
    List<ExprRewriteRule> onceRules = Lists.newArrayList();
    onceRules.add(ExtractCommonFactorsRule.INSTANCE);
    onceRules.add(InferFiltersRule.INSTANCE);
    exprRewriter = new ExprRewriter(rules, onceRules);
    // init mv rewriter
    List<ExprRewriteRule> mvRewriteRules = Lists.newArrayList();
    mvRewriteRules.add(new ExprToSlotRefRule());
    mvRewriteRules.add(ToBitmapToSlotRefRule.INSTANCE);
    mvRewriteRules.add(CountDistinctToBitmapOrHLLRule.INSTANCE);
    mvRewriteRules.add(CountDistinctToBitmap.INSTANCE);
    mvRewriteRules.add(NDVToHll.INSTANCE);
    mvRewriteRules.add(HLLHashToSlotRefRule.INSTANCE);
    mvExprRewriter = new ExprRewriter(mvRewriteRules);

    // context maybe null. eg, for StreamLoadPlanner.
    // and autoBroadcastJoinThreshold is only used for Query's DistributedPlanner.
    // so it is ok to not set autoBroadcastJoinThreshold if context is null
    if (context != null) {
        // compute max exec mem could be used for broadcast join
        long perNodeMemLimit = context.getSessionVariable().getMaxExecMemByte();
        double autoBroadcastJoinThresholdPercentage = context.getSessionVariable().autoBroadcastJoinThreshold;
        if (autoBroadcastJoinThresholdPercentage > 1) {
            autoBroadcastJoinThresholdPercentage = 1.0;
        } else if (autoBroadcastJoinThresholdPercentage <= 0) {
            autoBroadcastJoinThresholdPercentage = -1.0;
        }
        autoBroadcastJoinThreshold = (long) (perNodeMemLimit * autoBroadcastJoinThresholdPercentage);
    } else {
        // autoBroadcastJoinThreshold is a "final" field, must set an initial value for it
        autoBroadcastJoinThreshold = 0;
    }
}

单机执行计划

这一过程会生成PlanNodeTree,一般用于处理Join Reorder场景下的join调优与谓词下推等下推优化。

SingleNodePlanner类用于生成单击执行计划,该类其实也是基于impala框架改写适用于Doris的。在这个类中,除了谓词下推与join reorder外,还有类似列裁剪之类的优化,都在这个类中有处理。

分布式执行计划

DistributedPlanner类负责分布式执行计划的优化,其中会处理Join场景下的分布式执行,选择最优的Join执行路径;其次就是Agg聚合函数的分布式执行逻辑,Agg会分两步执行,先会在local本地scan,然后再Agg Node上在做一次scan聚合;当然还有一些算子需要做分布式逻辑执行优化. 都可以在这个类中找到。当然这个类也是基于impala框架改写的。

如下是AggNode的分布式执行计划优化:

总结

Doris的很多设计,其实都是有据可依,参考借鉴已有的框架/论文,再依据实际的业务场景做改写;这也正是我们要学习了解的东西,通过一个点,然后铺开去了解学习相关的其他点,慢慢的串联起来形成面。查询优化器结合如下博客再加上自己去阅读一下代码,对整个脉络及机制就算是掌握了。

聊聊分布式 SQL 数据库Doris(五) 这是之前写的对查询优化器相关的一些知识普及.

查询优化器详解 Doris团队针对查询优化器的视频讲解.

Doris SQL 原理解析 小米工程师写的,更深入的剖析.文章来源地址https://www.toymoban.com/news/detail-747528.html

到了这里,关于聊聊分布式 SQL 数据库Doris(九)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 聊聊分布式 SQL 数据库Doris(二)

    Doris中,Leader节点与非Leader节点和Observer节点之间的元数据高可用和一致性,是通过bdbje(全称:Oracle Berkeley DB Java Edition)的一致性和高可用实现的。 元数据与同步流程 元数据主要存储四类数据: 用户数据信息. 包括数据库, 表的schema, 分片信息等 各类作业信息. 如导入作业, clo

    2024年02月05日
    浏览(67)
  • 聊聊分布式 SQL 数据库Doris(六)

    此处的负载均衡指的是FE层的负载均衡. 当部署多个 FE 节点时,用户可以在多个 FE 之上部署负载均衡层来实现 Doris 的高可用。官方文档描述: 负载均衡 。 实现方式 实现方式有多种,如下列举。 开发者在应用层自己进行重试与负载均衡。 JDBC Connector 发现一个连接挂掉,就自

    2024年02月05日
    浏览(53)
  • 聊聊分布式 SQL 数据库Doris(一)

    MPP:Massively Parallel Processing, 即大规模并行处理. 一般用来指多个SQL数据库节点搭建的数据仓库系统. 执行查询的时候, 查询可以分散到多个SQL数据库节点上执行, 然后汇总返回给用户. Doris 作为一款开源的 MPP 架构 OLAP 高性能、实时的分析型数据库,能够运行在绝大多数主流的商

    2024年02月05日
    浏览(45)
  • 聊聊分布式 SQL 数据库Doris(三)

    在 Doris 的存储引擎规则: 表的数据是以分区为单位存储的,不指定分区创建时,默认就一个分区. 用户数据首先被划分成若干个分区(Partition),划分的规则通常是按照用户指定的分区列进行范围划分,比如按时间划分。 在每个分区内,数据被进一步的按照Hash的方式分桶,分

    2024年02月05日
    浏览(55)
  • 分布式数据库Apache Doris简易体验

    📢📢📢📣📣📣 哈喽!大家好,我是【IT邦德】,江湖人称jeames007,10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】!😜😜😜 中国DBA联盟(ACDU)成员,目前服务于工业互联网 擅长主流Oracle、MySQL、PG、高斯及Greenplum运维开发,备份恢复,安装迁移,性能优

    2024年02月06日
    浏览(59)
  • 分布式数据库Apache Doris HA集群部署

    📢📢📢📣📣📣 哈喽!大家好,我是【IT邦德】,江湖人称jeames007,10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】!😜😜😜 中国DBA联盟(ACDU)成员,目前服务于工业互联网 擅长主流Oracle、MySQL、PG、高斯及Greenplum运维开发,备份恢复,安装迁移,性能优

    2024年02月06日
    浏览(53)
  • RisingWave分布式SQL流处理数据库调研

    RisingWave是一款 分布式SQL流处理数据库 ,旨在帮助用户降低实时应用的的开发成本。作为专为云上分布式流处理而设计的系统,RisingWave为用户提供了与PostgreSQL类似的使用体验,官方宣称具备比Flink高出10倍的性能(指throughput)以及更低的成本。RisingWave开发只需要关注SQL开发

    2024年02月21日
    浏览(48)
  • 解释什么是分布式数据库,列举几种常见的分布式数据库系统

    敏感信息和隐私保护是指在收集、存储和使用个人数据时,需要采取一系列措施来保护这些数据的安全和机密性,防止数据被未经授权的第三方访问、使用或泄露。这些措施包括加密、访问控制、数据脱敏、数据加密、隐私政策等。 在隐私保护的技术手段方面,常用的技术包

    2024年02月08日
    浏览(57)
  • 分布式数据库架构

    对于mysql架构,一定会使用到读写分离,在此基础上有五种常见架构设计:一主一从或多从、主主复制、级联复制、主主与级联复制结合。 1.1、主从复制 这种架构设计是使用的最多的。在读写分离的基础上,会存在一台master作为写机,一个或多个slave作为读机。因为在实际的

    2024年02月10日
    浏览(50)
  • 分析型数据库:分布式分析型数据库

    分析型数据库的另外一个发展方向就是以分布式技术来代替MPP的并行计算,一方面分布式技术比MPP有更好的可扩展性,对底层的异构软硬件支持度更好,可以解决MPP数据库的几个关键架构问题。本文介绍分布式分析型数据库。 — 背景介绍— 目前在分布式分析型数据库领域,

    2023年04月14日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包