【scipy 基础】--空间计算

这篇具有很好参考价值的文章主要介绍了【scipy 基础】--空间计算。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

scipy.spatial子模块提供了一系列用于处理和计算空间数据和几何形状的算法和工具,在许多领域都有广泛的应用,例如计算机视觉、地理信息系统、机器人学、医学影像分析等。

下面,来具体看看scipy.spatial子模块为我们提供的主要功能分类。

1. 主要功能

scipy.spatial子模块中主要包含的功能有:

类别 说明
空间变换类 目前主要是三维旋转类的函数
最近邻查询类 提供了基于树结构的最近邻搜索算法,如K-d树、球树等,用于在大型空间数据集中快速找到最近邻对象
距离度量类 提供了计算点、线、面等几何形状之间的距离的函数,包括欧几里得距离、曼哈顿距离、切比雪夫距离等。
三角剖分、凸包类 提供了计算二维数据点的凸包的函数,即找到最小的凸多边形来包含所有数据点等
单纯形表示类 提供了三维几何对象的方法,如三维点、向量、矩阵

2. 使用示例

下面演示两个用scipy.spatial子模块中的函数实现的示例。

2.1. 凸包计算示例

给定任意个点,计算凸包就是计算包含给定点集中所有点的最小凸对象。

from scipy.spatial import ConvexHull
import numpy as np
import matplotlib.pyplot as plt

# 随机生成100个点
points = np.random.rand(100, 2)
# 计算这些点的凸包
hull = ConvexHull(points)

# 绘制一个随机点
plt.scatter(points[:, 0], points[:, 1], marker='o')
# 将位于凸包上的点用红色线连接起来
for simplex in hull.simplices:
    plt.plot(points[simplex, 0], points[simplex, 1], 'r-')

plt.show()

【scipy 基础】--空间计算

2.2. 三维旋转示例

使用scipy.spatial子模块来做三维旋转非常简单,它提了多种旋转三维物体的方法,
可以通过欧拉角轴角旋转向量四元组,以及旋转矩阵

使用方式类似,下面演示的是用欧拉角来旋转一个三维球体。
首先绘制一个球体:

import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure()
ax = fig.add_subplot(projection='3d')

# 球面点的数据
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
x = 10 * np.outer(np.cos(u), np.sin(v))
y = 10 * np.outer(np.sin(u), np.sin(v))
z = 10 * np.outer(np.ones(np.size(u)), np.cos(v))

ax.plot_surface(x, y, z, cmap=plt.cm.rainbow)

ax.set_aspect('equal')
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")

plt.show()

【scipy 基础】--空间计算

然后用 scipy.spatial 中的方法分别沿X轴旋转45度沿Y轴旋转90度

from scipy.spatial.transform import Rotation

# 沿着 "axis" 轴旋转 "degree" 角度
def rotate(axis, degree):
    r = Rotation.from_euler(axis, degree, degrees=True)
    v = np.dstack((x, y, z))
    v = r.apply(v.reshape(-1, 3))
    v = v.reshape((*z.shape, 3))
    return v


fig, ax = plt.subplots(1, 2, subplot_kw={"projection": "3d"})

v = rotate('x', 45)
ax[0].plot_surface(v[:, :, 0], v[:, :, 1], v[:, :, 2], 
                   cmap=plt.cm.rainbow)
ax[0].set_aspect('equal')
ax[0].set_title("沿X轴旋转45度")

v = rotate('y', 90)
ax[1].plot_surface(v[:, :, 0], v[:, :, 1], v[:, :, 2], 
                   cmap=plt.cm.rainbow)
ax[1].set_aspect('equal')
ax[1].set_title("沿Y轴旋转90度")

plt.show()

【scipy 基础】--空间计算

3. 总结

总之,scipy.spatial子模块的重点应用领域有:
距离计算问题,通过计算点、线、面等几何形状之间的距离,可以用于图像配准、碰撞检测、空间聚类等应用;
还有空间插值方法,可以将离散的空间数据转换为连续的函数,用于图像处理、数值分析等领域;
凸包算法,用于图像处理中的对象识别、区域提取等任务;
几何形状操作方法,可以对二维或三维的几何对象进行合并、相交、相减等操作,用于计算机图形学、机器人路径规划等应用;
最近邻搜索算法,在大型空间数据集中快速找到最近邻对象,用于推荐系统、空间索引等应用;

此外,该子模块还提供了排列组合、阶乘和伽马函数等数学计算操作。文章来源地址https://www.toymoban.com/news/detail-747576.html

到了这里,关于【scipy 基础】--空间计算的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python科学计算利器:安装Scipy

    Python科学计算利器:安装Scipy Scipy是一个基于Python的开源科学计算库,它提供了许多高级数学函数、优化算法等工具,可以帮助用户快速进行各种数学运算和数据分析。本文将详细介绍如何在Python中安装Scipy。 安装Python 首先需要在电脑上安装Python。可以通过Python官网下载安装

    2024年02月12日
    浏览(41)
  • Windows系统配置Anaconda虚拟环境,并安装Numpy、Scipy和Matplotlib等模块方法

    有些项目不是必须在Ubuntu系统下进行的,对大部分人来说更熟悉Window系统,且查阅电脑中相关文件和使用微信更方便,因此记录一下Windows系统配置Anaconda虚拟环境步骤和安装Numpy、Scipy及Matplotlib等模块方法。 一、Anaconda安装 Anaconda可以管理不同的python版本,因为有些项目需要

    2024年02月09日
    浏览(51)
  • 【Python】科学计算库Scipy简易入门

    Scipy是一个用于数学、科学、工程领域的常用软件包,可以处理插值、积分、优化、图像处理、常微分方程数值解的求解、信号处理等问题。它用于有效计算Numpy矩阵,使Numpy和Scipy协同工作,高效解决问题。 Scipy是由针对特定任务的子模块组成: 模块名 应用领域 scipy.cluster

    2024年02月06日
    浏览(48)
  • 十大边缘计算基础设施管理解决方案提供商:为企业数字化转型保驾护航

    “盘点:2022年十大边缘计算基础设施管理解决方案提供商转载” 随着数字化时代的到来,数据的产生和处理量呈现爆炸式增长,传统的集中式计算已经难以满足人们对计算效率的需求,边缘计算作为一种新型计算模式应运而生。边缘计算将计算和数据存储推向离用户更近的

    2024年02月04日
    浏览(54)
  • 【scipy 基础】--最优化

    SciPy 库的 optimize 模块主要用于执行各种优化任务。 优化 是寻找特定函数的最小值或最大值的过程,通常用于机器学习、数据分析、工程和其他领域。 scipy.optimize 提供了多种优化算法,包括梯度下降法、牛顿法、最小二乘法等,可以解决各种复杂的优化问题。 该模块还包含

    2024年02月05日
    浏览(46)
  • 【scipy 基础】--稀疏矩阵

    稀疏矩阵 是一种特殊的矩阵,其非零元素数目远远少于零元素数目,并且非零元素分布没有规律。 这种矩阵在实际应用中经常出现,例如在物理学、图形学和网络通信等领域。 稀疏矩阵 其实也可以和一般的矩阵一样处理,之所以要把它区分开来进行特殊处理,是因为: 一

    2024年02月05日
    浏览(40)
  • 【scipy 基础】--正交距离回归

    Scipy 的 ODR 正交距离回归(ODR-Orthogonal Distance Regression)模块,适用于 回归分析 时,因变量和自变量之间存在 非线性关系 的情况。 它提高了回归分析的准确性和稳健性。对于需要解决非线性回归问题的科研人员和工程师来说,它具有非常重要的意义。 ODR正交距离回归 模块的

    2024年02月05日
    浏览(46)
  • 【scipy 基础】--聚类

    物以类聚, 聚类算法 使用最优化的算法来计算数据点之间的距离,并将它们分组到最近的簇中。 Scipy 的聚类模块中,进一步分为两个聚类子模块: vq (vector quantization):提供了一种基于向量量化的聚类算法。 vq模块 支持多种向量量化算法,包括 K-means 、 GMM (高斯混合模

    2024年02月06日
    浏览(32)
  • 【scipy 基础】--线性代数

    SciPy 的 linalg 模块是 SciPy 库中的一个子模块,它提供了许多用于线性代数运算的函数和工具,如矩阵求逆、特征值、行列式、线性方程组求解等。 相比于 NumPy的linalg模块 , SciPy的linalg模块 包含更多的高级功能,并且在处理一些特定的数值计算问题时,可能会表现出更好的性

    2024年02月05日
    浏览(38)
  • 【scipy 基础】--图像处理

    SciPy 库本身是针对科学计算而不是图像处理的,只是图像处理也包含了很多数学计算, 所以 Scipy 也提供了一个专门的模块 ndimage 用于图像处理。 ndimage 模块提供的功能包括输入/输出图像、显示图像、基本操作(如裁剪、翻转、旋转等)、图像过滤(如去噪、锐化等)、图像

    2024年02月05日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包