聊聊神经网络模型流程与卷积神经网络的实现

这篇具有很好参考价值的文章主要介绍了聊聊神经网络模型流程与卷积神经网络的实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

神经网络模型流程

神经网络模型的搭建流程,整理下自己的思路,这个过程不会细分出来,而是主流程。

聊聊神经网络模型流程与卷积神经网络的实现

在这里我主要是把整个流程分为两个主流程,即预训练与推理。预训练过程主要是生成超参数文件与搭设神经网络结构;而推理过程就是在应用超参数与神经网络。

卷积神经网络的实现

在 聊聊卷积神经网络CNN中,将卷积神经的理论概述了一下,现在要大概的实践了。整个代码不基于pytorch/tensorflow这类大框架,而是基于numpy库原生来实现算法。pytorch/tensorflow中的算子/函数只是由别人已实现了,我们调用而已;而基于numpy要自己实现一遍,虽然并不很严谨,但用于学习足以。

源代码是来自《深度学习入门:基于Python的理论与实现》,可以在 https://www.ituring.com.cn/book/1921 上获取下载

搭建CNN

网络构成如下:

聊聊神经网络模型流程与卷积神经网络的实现

如图所示,网络的构成是"Conv-ReLU-Pooling-Affine-ReLU-Affine-Softmax". 对于卷积层与池化层的计算,由于其是四维数据(数据量,通道,高,长),不太好计算,使用im2col函数将其展开成二维 2 × 2的数据,最后输出时,利用numpy库的reshape函数转换输出的大小,方便计算。其示意图如下:

聊聊神经网络模型流程与卷积神经网络的实现

聊聊神经网络模型流程与卷积神经网络的实现

这样也满足了矩阵内积计算的要求,即 行列数要对应

CNN程序代码实现如下:

# coding: utf-8
import sys, os
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import pickle
import numpy as np
from collections import OrderedDict
from DeepLearn_Base.common.layers import *
from DeepLearn_Base.common.gradient import numerical_gradient

class SimpleConvNet:
    """简单的ConvNet

    conv - relu - pool - affine - relu - affine - softmax
    
    Parameters
    ----------
    input_dim: 输入数据的维度,通道、高、长
    conv_param: 卷积核参数; filter_num:卷积核数量; filter_size:卷积核大小; stride:步幅; pad:填充
    input_size : 输入大小(MNIST的情况下为784)
    hidden_size_list : 隐藏层的神经元数量的列表(e.g. [100, 100, 100])
    output_size : 输出大小(MNIST的情况下为10)
    activation : 'relu' or 'sigmoid'
    weight_init_std : 指定权重的标准差(e.g. 0.01)
        指定'relu'或'he'的情况下设定“He的初始值”
        指定'sigmoid'或'xavier'的情况下设定“Xavier的初始值”
    """
    def __init__(self, input_dim=(1, 28, 28), 
                 conv_param={'filter_num':30, 'filter_size':5, 'pad':0, 'stride':1},
                 hidden_size=100, output_size=10, weight_init_std=0.01):
        filter_num = conv_param['filter_num']
        filter_size = conv_param['filter_size']
        filter_pad = conv_param['pad']
        filter_stride = conv_param['stride']
        input_size = input_dim[1]
        conv_output_size = (input_size - filter_size + 2*filter_pad) / filter_stride + 1
        pool_output_size = int(filter_num * (conv_output_size/2) * (conv_output_size/2))

        # 初始化权重
        self.params = {}
        self.params['W1'] = weight_init_std * \
                            np.random.randn(filter_num, input_dim[0], filter_size, filter_size)
        self.params['b1'] = np.zeros(filter_num)
        self.params['W2'] = weight_init_std * \
                            np.random.randn(pool_output_size, hidden_size)
        self.params['b2'] = np.zeros(hidden_size)
        self.params['W3'] = weight_init_std * \
                            np.random.randn(hidden_size, output_size)
        self.params['b3'] = np.zeros(output_size)

        # 生成层
        self.layers = OrderedDict()
        self.layers['Conv1'] = Convolution(self.params['W1'], self.params['b1'],
                                           conv_param['stride'], conv_param['pad'])
        self.layers['Relu1'] = Relu()
        self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2)
        self.layers['Affine1'] = Affine(self.params['W2'], self.params['b2'])
        self.layers['Relu2'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W3'], self.params['b3'])

        self.last_layer = SoftmaxWithLoss()

    # 需要处理数据,将输入数据的多维与卷积核的多维分别展平后做矩阵运算
    # 在神经网络的中间层(conv,relu,pooling,affine等)的forward函数中用到了img2col与reshape结合展平数据,用向量内积运算
    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)

        return x

    def loss(self, x, t):
        """求损失函数
        参数x是输入数据、t是教师标签
        """
        y = self.predict(x)
        return self.last_layer.forward(y, t)

    # 计算精确度
    def accuracy(self, x, t, batch_size=100):
        if t.ndim != 1 : t = np.argmax(t, axis=1)
        
        acc = 0.0
        
        for i in range(int(x.shape[0] / batch_size)):
            tx = x[i*batch_size:(i+1)*batch_size]
            tt = t[i*batch_size:(i+1)*batch_size]
            y = self.predict(tx)
            y = np.argmax(y, axis=1)
            acc += np.sum(y == tt) 
        
        return acc / x.shape[0]

    def numerical_gradient(self, x, t):
        """求梯度(数值微分)

        Parameters
        ----------
        x : 输入数据
        t : 教师标签

        Returns
        -------
        具有各层的梯度的字典变量
            grads['W1']、grads['W2']、...是各层的权重
            grads['b1']、grads['b2']、...是各层的偏置
        """
        loss_w = lambda w: self.loss(x, t)

        grads = {}
        for idx in (1, 2, 3):
            grads['W' + str(idx)] = numerical_gradient(loss_w, self.params['W' + str(idx)])
            grads['b' + str(idx)] = numerical_gradient(loss_w, self.params['b' + str(idx)])

        return grads

    def gradient(self, x, t):
        """求梯度(误差反向传播法)

        Parameters
        ----------
        x : 输入数据
        t : 教师标签

        Returns
        -------
        具有各层的梯度的字典变量
            grads['W1']、grads['W2']、...是各层的权重
            grads['b1']、grads['b2']、...是各层的偏置
        """
        # forward
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.last_layer.backward(dout)

        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 设定
        grads = {}
        grads['W1'], grads['b1'] = self.layers['Conv1'].dW, self.layers['Conv1'].db
        grads['W2'], grads['b2'] = self.layers['Affine1'].dW, self.layers['Affine1'].db
        grads['W3'], grads['b3'] = self.layers['Affine2'].dW, self.layers['Affine2'].db

        return grads
        
    def save_params(self, file_name="params.pkl"):
        params = {}
        for key, val in self.params.items():
            params[key] = val
        with open(file_name, 'wb') as f:
            pickle.dump(params, f)

    def load_params(self, file_name="params.pkl"):
        with open(file_name, 'rb') as f:
            params = pickle.load(f)
        for key, val in params.items():
            self.params[key] = val

        for i, key in enumerate(['Conv1', 'Affine1', 'Affine2']):
            self.layers[key].W = self.params['W' + str(i+1)]
            self.layers[key].b = self.params['b' + str(i+1)]

激活函数与卷积函数的实现代码没有详细的写出来,可以自己去下载查看

在这整个的过程中,我个人觉得最难的就是神经网络层的搭建与数据的计算。前者决定了神经网络的结构,而后者决定了是否最终结果。通过将数据展平,才能方便,正确的进行向量内积计算。

预训练

trainer.py文件是进行神经网络训练的类,会统计执行完一个epoch后的精确度,过程要选择梯度更新算法,学习率,批大小,epoch次数等参数。

# coding: utf-8
import sys, os
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import numpy as np
from DeepLearn_Base.common.optimizer import *

class Trainer:
    """进行神经网络的训练的类
    epochs: 以所有数据走完前向、后向传播为一次;该数值表示为总次数
    mini_batch_size: 100; 每批次迭代多少数据
    evaluate_sample_num_per_epoch: 1000;
    """
    def __init__(self, network, x_train, t_train, x_test, t_test,
                 epochs=20, mini_batch_size=100,
                 optimizer='SGD', optimizer_param={'lr':0.01}, 
                 evaluate_sample_num_per_epoch=None, verbose=True):
        self.network = network
        self.verbose = verbose
        self.x_train = x_train
        self.t_train = t_train
        self.x_test = x_test
        self.t_test = t_test
        self.epochs = epochs
        self.batch_size = mini_batch_size
        self.evaluate_sample_num_per_epoch = evaluate_sample_num_per_epoch

        # optimzer: 梯度更新优化器; 更新多种梯度更新算法实现梯度更新.
        optimizer_class_dict = {'sgd':SGD, 'momentum':Momentum, 'nesterov':Nesterov,
                                'adagrad':AdaGrad, 'rmsprpo':RMSprop, 'adam':Adam}
        self.optimizer = optimizer_class_dict[optimizer.lower()](**optimizer_param)
        
        self.train_size = x_train.shape[0]
        self.iter_per_epoch = max(self.train_size / mini_batch_size, 1)
        self.max_iter = int(epochs * self.iter_per_epoch)
        self.current_iter = 0
        self.current_epoch = 0
        
        self.train_loss_list = []
        self.train_acc_list = []
        self.test_acc_list = []

    def train_step(self):
        # 随机挑选批次的数据进行梯度更新
        batch_mask = np.random.choice(self.train_size, self.batch_size)
        x_batch = self.x_train[batch_mask]
        t_batch = self.t_train[batch_mask]
        # 开始更新梯度
        grads = self.network.gradient(x_batch, t_batch)
        self.optimizer.update(self.network.params, grads)
        
        # 计算损失
        loss = self.network.loss(x_batch, t_batch)
        self.train_loss_list.append(loss)
        if self.verbose: print("train loss:" + str(loss))
        
        # 计算是否完成了一个epoch的执行
        if self.current_iter % self.iter_per_epoch == 0:
            self.current_epoch += 1
            
            x_train_sample, t_train_sample = self.x_train, self.t_train
            x_test_sample, t_test_sample = self.x_test, self.t_test
            if not self.evaluate_sample_num_per_epoch is None:
                t = self.evaluate_sample_num_per_epoch
                x_train_sample, t_train_sample = self.x_train[:t], self.t_train[:t]
                x_test_sample, t_test_sample = self.x_test[:t], self.t_test[:t]
                
            train_acc = self.network.accuracy(x_train_sample, t_train_sample)
            test_acc = self.network.accuracy(x_test_sample, t_test_sample)
            self.train_acc_list.append(train_acc)
            self.test_acc_list.append(test_acc)

            if self.verbose: print("=== epoch:" + str(self.current_epoch) + ", train acc:" + str(train_acc) + ", test acc:" + str(test_acc) + " ===")
        self.current_iter += 1

    def train(self):
        for i in range(self.max_iter):
            self.train_step()

        test_acc = self.network.accuracy(self.x_test, self.t_test)

        if self.verbose:
            print("=============== Final Test Accuracy ===============")
            print("test acc:" + str(test_acc))

在神经网络训练中,epoch参数是指将整个训练集通过模型一次,并更新模型参数的过程。每一次epoch,模型都会将训练集中的所有样本通过一次,并根据这些样本的标签和模型预测的结果计算损失值,然后根据损失值对模型的参数进行更新。这个过程会重复进行,直到达到预设的epoch数。

正式开始预训练,要准备好训练数据集,初始化CNN,梯度优化参数,超参数存储路径等。如下所示:

# coding: utf-8
import sys, os
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import numpy as np
import matplotlib.pyplot as plt
from DeepLearn_Base.dataset.mnist import load_mnist
from simple_convnet import SimpleConvNet
from DeepLearn_Base.common.trainer import Trainer

# 读入数据
# 输入数据的表现形式,可以是多维的,可以是展平(reshape)为一维的
(x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)

# 处理花费时间较长的情况下减少数据,截取部分数据
# 训练数据截取 5000 条
# 测试数据截取 1000 条
x_train, t_train = x_train[:5000], t_train[:5000]
x_test, t_test = x_test[:1000], t_test[:1000]

# 初始化epoch
max_epochs = 20

# 初始化CNN
# input_dim, 输入数据: channel, height, width
# conv_param, 卷积核参数: filter_num:卷积核数量; filter_size:卷积核大小; stride:步幅; pad:填充; 30个5 × 5,通道为1的卷积核
network = SimpleConvNet(input_dim=(1,28,28), 
                        conv_param = {'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
                        hidden_size=100, output_size=10, weight_init_std=0.01)

# 初始化预训练
# optimizer: 梯度优化算法; lr表示学习率
trainer = Trainer(network, x_train, t_train, x_test, t_test,
                  epochs=max_epochs, mini_batch_size=100,
                  optimizer='Adam', optimizer_param={'lr': 0.001},
                  evaluate_sample_num_per_epoch=1000)
trainer.train()

# 保存参数
network.save_params("E:\\workcode\\code\\DeepLearn_Base\\ch07\\cnn_params.pkl")
print("Saved Network Parameters!")

# 绘制图形
markers = {'train': 'o', 'test': 's'}
x = np.arange(max_epochs)
plt.plot(x, trainer.train_acc_list, marker='o', label='train', markevery=2)
plt.plot(x, trainer.test_acc_list, marker='s', label='test', markevery=2)
plt.xlabel("epochs")
plt.ylabel("accuracy")
plt.ylim(0, 1.0)
plt.legend(loc='lower right')
plt.show()

预训练好后,查看是否生成超参数文件。

推理

准备好测试数据集,应用已预训练好的神经网络模型与超参数。

# coding: utf-8
import sys, os
# 为了导入父目录的文件而进行的设定
sys.path.append(os.pardir)  
import numpy as np
from DeepLearn_Base.dataset.mnist import load_mnist
from DeepLearn_Base.common.functions import sigmoid, softmax
from simple_convnet import SimpleConvNet

def get_data():
    (x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)
    return x_test, t_test

# 下载mnist数据集
# 分别下载测试图像包、测试标签包、训练图像包、训练标签包
x, t = get_data()

conv = SimpleConvNet()
# 获取预训练好的权重与偏置参数
conv.load_params("E:\\workcode\\code\\DeepLearn_Base\\ch07\\cnn_params.pkl")

# 初始化
batch_size = 100
accuracy_cnt = 0

for i in range(int(x.shape[0] / batch_size)):
    # 批次取数据
    x_batch = x[i * batch_size : (i+1) * batch_size]
    tt = t[i * batch_size : (i+1) * batch_size]
    # 执行推理
    y_batch = conv.predict(x_batch)
    p = np.argmax(y_batch, axis=1)
    # 统计预测正确的数据
    accuracy_cnt += np.sum(p == tt)
    print(f'第 {i} 批次,输入数据量{(i+1) * batch_size}个,准确预测数为 {accuracy_cnt}')

print("Accuracy:" + str(float(accuracy_cnt) / x.shape[0]))

最后的输出如下:

聊聊神经网络模型流程与卷积神经网络的实现文章来源地址https://www.toymoban.com/news/detail-748540.html

到了这里,关于聊聊神经网络模型流程与卷积神经网络的实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能(Pytorch)搭建模型1-卷积神经网络实现简单图像分类

    本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052 目录 一、Pytorch深度学习框架 二、 卷积神经网络 三、代码实战 内容: 一、Pytorch深度学习框架 PyTorch是一个开源的深度学习框架,它基于Torch进行了重新实现,主要支持GPU加速计算,同时也可以在CPU上运行

    2024年02月03日
    浏览(66)
  • 项目实战解析:基于深度学习搭建卷积神经网络模型算法,实现图像识别分类

    随着人工智能的不断发展,深度学习这门技术也越来越重要,很多人都开启了学习机器学习,本文将通过项目开发实例,带领大家从零开始设计实现一款基于深度学习的图像识别算法。 学习本章内容, 你需要掌握以下基础知识: Python 基础语法 计算机视觉库(OpenCV) 深度学习

    2024年02月03日
    浏览(66)
  • Python基于PyTorch实现卷积神经网络回归模型(CNN回归算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 卷积神经网络,简称为卷积网络,与普通神经网络的区别是它的卷积层内的神经元只覆盖输入特征局部范围的单元,具有稀疏连接(sparse connec

    2024年02月15日
    浏览(50)
  • Python基于PyTorch实现卷积神经网络分类模型(CNN分类算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 卷积神经网络,简称为卷积网络,与普通神经网络的区别是它的卷积层内的神经元只覆盖输入特征局部范围的单元,具有稀疏连接(sparse connec

    2024年02月15日
    浏览(51)
  • python开发构建轻量级卷积神经网络模型实现手写甲骨文识别系统

    手写汉字、手写数字、手写字母识别模型都已经做过很多了,但是手写甲骨文识别这个应该都是很少有听说过的吧,今天也是看到这个数据集就想着基于这批手写甲骨文数据集开发构建识别模型,首先来看下效果图: 接下来看下对应使用的数据集:  共包含40个不同类别对象

    2024年02月08日
    浏览(55)
  • 聊聊 神经网络模型 传播计算逻辑

    预训练过程就是在不断地更新权重超参数与偏置超参数,最后选择合适的超参数,生成超参数文件。上一篇博客 是使用已有的预训练超参数文件,要训练自己的超参数,需要对神经网络层中前向传播与反向传播计算熟悉,了解计算逻辑,才能不断地更新选择合适的超参数。

    2024年02月05日
    浏览(46)
  • 入门孪生网络3-------使用一维卷积神经网络1DCNN与孪生网络的组合模型来实现excel数据的分类

    读取数据:使用NumPy加载数据文件(假设为\\\" data.csv \\\"),并将其分为训练集和测试集。 定义1D卷积神经网络模型:通过创建get_cnn_model()函数来定义1DCNN模型,该模型包括一系列卷积层和池化层,以及最后的全连接层输出。这个模型将用于构建孪生网络模型的多个分支。 定义孪

    2024年02月09日
    浏览(52)
  • Python实现猎人猎物优化算法(HPO)优化卷积神经网络回归模型(CNN回归算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 猎人猎物优化搜索算法(Hunter–prey optimizer, HPO)是由Naruei Keynia于2022年提出的一种最新的优化搜索算法。受到捕食动物(如狮子、豹子和狼)和猎物

    2024年02月09日
    浏览(50)
  • Python实现ACO蚁群优化算法优化卷积神经网络分类模型(CNN分类算法)项目实战

    说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。 蚁群优化算法(Ant Colony Optimization, ACO)是一种源于大自然生物世界的新的仿生进化算法,由意大利学者M. Dorigo, V. Maniezzo和A.Colorni等人于20世纪90年代初

    2024年02月06日
    浏览(37)
  • Python实现ACO蚁群优化算法优化卷积神经网络回归模型(CNN回归算法)项目实战

    说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。 蚁群优化算法(Ant Colony Optimization, ACO)是一种源于大自然生物世界的新的仿生进化算法,由意大利学者M. Dorigo, V. Maniezzo和A.Colorni等人于20世纪90年代初

    2024年02月05日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包