【scikit-learn基础】--『数据加载』之真实数据集

这篇具有很好参考价值的文章主要介绍了【scikit-learn基础】--『数据加载』之真实数据集。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

上一篇介绍了scikit-learn中的几个玩具数据集,本篇介绍scikit-learn提供的一些真实的数据集。
玩具数据集:scikit-learn 基础(01)--『数据加载』之玩具数据集

1. 获取数据集

与玩具数据集不同,真实的数据集的数据不仅数据特征多,而且数据量也比较大,
所以没有直接包含在scikit-learn库中。

虽然scikit-learn中提供了在线加载数据的函数,不过由于网络方面的原因,在线加载几乎不可能成功。
我离线下载了所有scikit-learn的真实数据,并且转换成了缓存文件,经测试可正常离线使用。

已经转换好的离线数据集:

  1. olivetti:https://url11.ctfile.com/f/45455611-930509718-42d985?p=6872
  2. 20newsgroups:https://url11.ctfile.com/f/45455611-930509625-f32241?p=6872
  3. lfw_home:https://url11.ctfile.com/f/45455611-930509715-c10239?p=6872
  4. covertype:https://url11.ctfile.com/f/45455611-930509631-f5e629?p=6872
  5. RCV1:https://url11.ctfile.com/f/45455611-930509760-30d2a2?p=6872
  6. kddcup99-py3:https://url11.ctfile.com/f/45455611-930509652-4f47ea?p=6872
  7. kddcup99_10-py3:https://url11.ctfile.com/f/45455611-930509637-2f0131?p=6872
  8. cal_housing:https://url11.ctfile.com/f/45455611-930509628-395dab?p=6872

:所有文件的下载密码都是:6872

下载上面的 zip 包之后,解压到本地某个目录中(下面的示例是:d:\share\sklearn-realdata),
加载离线数据集的方法如下:

import os
# sklearn一共提供了9种加载真实数据的方法
from sklearn.datasets import fetch_olivetti_faces
from sklearn.datasets import fetch_20newsgroups
from sklearn.datasets import fetch_20newsgroups_vectorized
from sklearn.datasets import fetch_lfw_people
from sklearn.datasets import fetch_lfw_pairs
from sklearn.datasets import fetch_covtype
from sklearn.datasets import fetch_rcv1
from sklearn.datasets import fetch_kddcup99
from sklearn.datasets import fetch_california_housing

home_dir = "d:\share\sklearn-realdata"
data = fetch_olivetti_faces(data_home=os.path.join(home_dir, "olivetti"))
print(data)

data = fetch_20newsgroups(data_home=os.path.join(home_dir, "20newsgroups"))
print(data)

data = fetch_20newsgroups_vectorized(data_home=os.path.join(home_dir, "20newsgroups"))
print(data)

data = fetch_lfw_people(data_home=home_dir)
print(data)
data = fetch_lfw_pairs(data_home=home_dir)
print(data)

data = fetch_covtype(data_home=home_dir)
print(data)

data = fetch_rcv1(data_home=home_dir)
print(data)

# 只加载10%的数据
data = fetch_kddcup99(data_home=home_dir)
print(data)
# 加载全部的数据
data = fetch_kddcup99(data_home=home_dir, percent10=False)
print(data)

data = fetch_california_housing(data_home=os.path.join(home_dir, "cal_housing"))
print(data)

加载离线数据集的关键在于设置 data_home 参数。

2. 数据集概况

真实数据和之前的玩具数据集相比,它的优势在于数据取自实际应用之中,更能够反映实际问题的复杂性。
用它来学习算法时,可以提前遇到各种调整模型的问题。

scikit-learn一个提供了9 种加载真实数据集的函数,实际是7 种数据集。

2.1. Olivetti 面部数据集

这个数据集来自从 AT&T,包含40 个不同个体的人脸图像的数据集,每个个体有10 张不同的图片。
这些图像是在不同的时间拍摄的,并且具有不同的照明和面部表情(睁开/闭上眼睛,微笑/不微笑)以及面部细节(戴眼镜/不戴眼镜)。

所有的图像都采用黑色均匀的背景,并且个体处于直立的正面位置,允许一定的侧移。
图像被量化为256 个灰度级并以8 位无符号整数的形式存储。
这个数据集的目标是从 0 到 39 的整数,代表图中人物的身份。
由于每一类只有十个样例,这个相对较小的数据集对无监督学习半监督学习具有有趣的挑战性。

此数据集的加载函数:fetch_olivetti_faces

2.2. 新闻组数据集

这是一个常用的文本分类数据集,包含大约20,000 篇新闻文章,这些文章均匀分布在20 个不同的主题中。

这些新闻组数据来源于 1997 年之前的新闻文章,包括各种不同的新闻来源日期
这个数据集的目标是进行文本分类,将每篇文章分配到其对应的主题中。

该数据集通常用于训练和测试文本分类算法,例如朴素贝叶斯分类器、支持向量机或决策树等。
由于数据集的大小适中,它也适用于较小的机器学习模型。

此数据集的加载函数:fetch_20newsgroupsfetch_20newsgroups_vectorized
这两个函数的主要区别在于:

  • fetch_20newsgroups返回的是一个原始的文本列表,每个新闻组的数据都以字符串形式给出
  • fetch_20newsgroups_vectorized返回的是一个可以直接用于机器学习或评估的向量数据集,它已经为文本数据进行了特征提取,返回的是一个稀疏矩阵

2.3. 人脸数据集

这个数据集是一个包含13233 张人脸图像的数据集,用于测试人脸识别算法。
这些图像均来自互联网,包含不同的人脸角度、表情和光照条件。
每张图像都给出了对应的人名,共有5749 个个体,其中大部分人只有一张图像,部分人有多张图像。

此数据集的目标是测试人脸识别算法的准确率,通常用于评估算法的准确性召回率交叉验证等。
由于数据集包含大量的人脸图像和个体,因此也适用于训练和测试深度学习模型。

此数据集的加载函数:fetch_lfw_peoplefetch_lfw_pairs
这两个函数的主要区别在于:

  • fetch_lfw_people数据集中每个人至少有一张图片,每张图片都对应不同的人。这个数据集的目标是训练一个分类器来识别不同的人
  • fetch_lfw_pairs数据集中每个人有两张不同图片。这些图片是在不同的时间、不同的光照条件下拍摄的。这个数据集的目标是训练一个分类器来识别同一个人在不同条件下的图片

2.4. 森林覆盖数据集

这个数据集是一个包含森林覆盖类型信息的植被覆盖类型数据集。
该数据集包含581,012 个样本,每个样本是一个30m x 30m 区域的森林覆盖类型,
包括 7 种类型:云杉/冷杉、洛奇波尔松、黄松、三叶杨/柳树、阿斯彭、花旗松和克鲁姆霍尔茨。

除了前 10 个特征是浮点数外,其余特征都是one-hot 变量。这个数据集的目标是预测给定区域的森林覆盖类型。
适用于分类相关的机器学习算法的测试。

此数据集的加载函数:fetch_covtype

2.5. RCV1 多标签数据集

这个数据集是一个包含1063389 个样本的大规模文本分类数据集。
该数据集由英国广播公司(BBC)和英国邮报(The Guardian)的新闻文章组成,每篇文章都被标记为其中一个类别(例如体育、娱乐、政治等)。

RCV1数据集的目标是训练和测试文本分类算法。由于数据集规模较大,它适合用于评估大型机器学习模型和分布式计算系统的性能。
RCV1数据集包含多个属性,如文本内容、类别标签和样本权重等,可以用于训练多种不同类型的文本分类模型,例如朴素贝叶斯分类器、支持向量机或深度学习模型等。

此数据集的加载函数:fetch_rcv1

2.6. kddcup99 数据集

这个数据集是一个网络入侵检测的数据集,源自DARPA入侵检测评估项目。
该数据集包含了 9 个星期的网络连接数据,分为训练集测试集两部分。

训练集包含了4920917条连接记录,测试集包含了4555136条连接记录。
这些连接记录涵盖了多种网络协议和攻击类型,例如 TCP、UDP、ICMP 等以及 DoS、U2R、R2L 等攻击类型。
数据集中的每个连接记录包含41 个固定的特征属性,包括源 IP 地址、目的 IP 地址、协议类型、字节数等,以及一个类标识符表示该连接是否属于攻击类型。

kddcup99数据集是网络入侵检测领域广泛使用的事实基准数据集,可用于评估和比较不同入侵检测算法的性能。

此数据集的加载函数:fetch_kddcup99
由于此数据集数据量很大,所以默认只加载 10%的数据,若要加载全部数据设置参数percent10=False
本文第一节加载离线数据的示例中也加载示例。

2.7. 加州住房数据集

这个数据集包含了加利福尼亚州 1990 年所有城市的房价信息。
数据集中的每个样本都包含 8 个变量的值:

  1. MedianHouseValue(中位数房价):以 1000 美元为单位。
  2. MedianIncome(中位数收入):以年为单位,以美元为单位。
  3. HouseAge(房龄):以年为单位。
  4. Rooms(房间数):整数。
  5. Bedrooms(卧室数):整数。
  6. Population(人口):以 1000 人为单位。
  7. HousingUnits(房屋数量):以千为单位。
  8. SquareMiles(平方英里):以平方英里为单位。

该数据集被广泛用于房价预测相关的机器学习算法的学习中。
此数据集的加载函数:fetch_california_housing

3. 总结

当机器学习的算法掌握到一定程度的时候,一定会想尝试用真实的数据集来训练模型。
这些经典的真实数据集不仅数据量丰富,而且涵盖的范围广,用来练手和提高自己的能力再好不过。文章来源地址https://www.toymoban.com/news/detail-748830.html

到了这里,关于【scikit-learn基础】--『数据加载』之真实数据集的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【scikit-learn基础】--概述

    Scikit-learn 是一个基于 Python 的开源机器学习库,它提供了大量的机器学习算法和工具,方便用户进行数据挖掘、分析和预测。 Scikit-learn 是基于另外两个知名的库 Scipy 和 Numpy 的, 关于 Scipy 和 Numpy 等库,之前的系列文章中有介绍: Scipy 基础系列 Numpy 基础系列 自从 AlphaGo 再度

    2024年02月05日
    浏览(41)
  • 机器学习基础07-模型选择01-利用scikit-learn 基于Pima 数据集对LogisticRegression算法进行评估

    选择合适的模型是机器学习和深度学习中非常重要的一步,它直接影响到模型的性能和泛化能力。 “所有模型都是坏的,但有些模型是有用的”。建立模型之后就要去评 估模型,确定模型是否有用。模型评估是模型开发过程中不可或缺的一部 分,有助于发现表达数据的最佳

    2024年02月14日
    浏览(47)
  • 【scikit-learn基础】--『回归模型评估』之偏差分析

    模型评估 在统计学和机器学习中具有至关重要,它帮助我们主要目标是量化模型预测新数据的能力。 本篇主要介绍 模型评估 时,如何利用 scikit-learn 帮助我们快速进行各种 偏差 的分析。 R² 分数 (也叫 决定系数 ),用于衡量模型预测的拟合优度,它表示模型中 因变量 的

    2024年01月24日
    浏览(46)
  • 【scikit-learn基础】--『回归模型评估』之误差分析

    模型评估 在统计学和机器学习中具有至关重要,它帮助我们主要目标是量化模型预测新数据的能力。 在这个数据充斥的时代,没有评估的模型就如同盲人摸象,可能带来误导和误判。 模型评估 不仅是一种方法,更是一种保障,确保我们在数据海洋中航行时,能够依赖准确的

    2024年01月22日
    浏览(45)
  • 【scikit-learn基础】--『预处理』之 正则化

    数据的 预处理 是数据分析,或者机器学习训练前的重要步骤。 通过数据预处理,可以 提高数据质量 ,处理数据的缺失值、异常值和重复值等问题,增加数据的准确性和可靠性 整合不同数据 ,数据的来源和结构可能多种多样,分析和训练前要整合成一个数据集 提高数据性

    2024年02月04日
    浏览(52)
  • 【数据科学】Scikit-learn

    Scikit-learn 是 开源的Python库 ,通过统一的界面实现 机器学习 、 预处理 、 交叉验证及可视化算法 。   以上是使用 scikit-learn 库 进行 k-最近邻(KNN)分类 的流程,得到 KNN 分类器在 iris 数据集上的预测准确率。    Scikit-learn 处理的数据是 存储为 NumPy 数组或 SciPy 稀疏矩阵

    2024年02月07日
    浏览(47)
  • 【scikit-learn基础】--『预处理』之 标准化

    数据的 预处理 是数据分析,或者机器学习训练前的重要步骤。 通过数据预处理,可以 提高数据质量 ,处理数据的缺失值、异常值和重复值等问题,增加数据的准确性和可靠性 整合不同数据 ,数据的来源和结构可能多种多样,分析和训练前要整合成一个数据集 提高数据性

    2024年02月05日
    浏览(45)
  • Python数据科学:Scikit-Learn机器学习

    Scikit-Learn使用的数据表示:二维网格数据表 鸢尾花数据集说明: sepal_length:萼片长度 sepal_width:萼片宽度 petal_length:花瓣长度 petal_width:花瓣宽度 species:鸢尾花类型,Iris-setosa(山鸢尾),Iris-versicolor(变色鸢尾),Iris-virginica(维吉尼亚鸢尾) df_iris.head() 样本:鸢尾花数据集矩阵,矩阵

    2024年02月21日
    浏览(56)
  • scikit-learn 中 Boston Housing 数据集问题解决方案

    在部分旧教程或教材中是 sklearn,现在【2023】已经变更为 scikit-learn 作用:开源机器学习库,支持有监督和无监督学习。它还提供了用于模型拟合、数据预处理、模型选择、模型评估和许多其他实用程序的各种工具。 安装 pip install scikit-learn 此数据集原本应该在 sklearn 中是自

    2023年04月13日
    浏览(30)
  • 机器学习-决策树-回归-CPU(中央处理单元)数据-python scikit-learn

    决策树是一种监督机器学习算法,用于回归和分类任务。树是可以处理复杂数据集的强大算法。 决策树特性: 不需要数值输入数据进行缩放。无论数值是多少,决策树都不在乎。 不同于其他复杂的学习算法,决策树的结果是可以解释的,决策树不是黑盒类型的模型。 虽然大

    2024年02月20日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包