Flink State 状态原理解析

这篇具有很好参考价值的文章主要介绍了Flink State 状态原理解析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、Flink State 概念

State 用于记录 Flink 应用在运行过程中,算子的中间计算结果或者元数据信息。运行中的 Flink 应用如果需要上次计算结果进行处理的,则需要使用状态存储中间计算结果。如 Join、窗口聚合场景。

Flink 应用运行中会保存状态信息到 State 对象实例中,State 对象实例通过 StateBackend 实现将相关数据存储到 FS 文件系统或者 RocksDB 数据库中。在Flink应用运行过程中,通过 checkpoint 快照定期地保存状态数据。并在 Flink 应用重启时加载checkpoint/savepoint 来实现状态的恢复,从而让 Flink 应用继续完成之前的数据计算,实现数据精确一次向下游传递。

1.1 Apache Flink 中 State 的存储实现 StateBackend 分类

分为以下3类:

  • 基于内存的 HeapStateBackend。状态存储在内存中。
  • 基于 HDFS 或 OSS 的 FsStateBackend。状态存储在内存,并在做 cp(checkpoint)时存到远端。
  • 基于 RocksDB 的 RocksDBStateBackend。将对象序列化成二进制存在内存和本地磁盘的 RocksDB 数据中,并在 cp 时存到远端。

HeapStateBackend 和 RocksDBStateBackend 分别对应在 TaskManager 内存模型中的位置:

RocksDBStateBackend 中存储结构:

namespace: 在不同的 namespace 下存在相同名称的状态。

1.1.1 State 状态持久化

通过 Chandy-Lamport 分布式快照算法进行 checkpoint 完成状态数据的持久化。然后在 Flink 应用重启时读取 State 状态数据,进行运行现场的还原。

chekcpoint 分类:

  • 基于内存的全量 checkpoint
  • HDFS 全量 checkpoint
  • RocksDB 全量 checkpoint/增量 checkpoint

1.2 State 基于算子和数据分组的分类

State 可分为 Operator State 和 Keyed State 两类。

  • Operator State(称为 non-keyed state)

常常存在于Source, Sink中。具体实现类例如:

  • BroadcastState

例:Kafka Source 中用 OperatorState 记录 offset。

  • Keyed State

任何类型的 keyed state 都可以有有效期(TTL),所有状态类型都支持单元素的 TTL。 这意味着 List 元素和 Map 映射元素将独立到期。

例:SQL GroupBy/PartitionBy 后的窗口中的数据,每个 key 都有对应的 State。key 与 key 之间的 State 数据不可见。

keyed state 的具体实现类:

  • ValueState
  • MapState
  • ListState
  • AggregatingState
  • ReducingState
  • 。。。。。

Flink State思维导图:

Keyed State Operator State
适用算子类型 只适用于KeyedStream上的算子 可用于所有算子
状态分配 每个Key对应一个状态 一个算子子任务对应一个状态
横向扩展 状态随着keyBy的分组KeyGroup自动在多个算子子任务上迁移 有多种状态重新分配的方式
创建和访问方式 自定义算子(重写RichFunction,通过State 名称从 getRuntimeContext方法创建或获得 State ) 实现 CheckpointedFunction 等接口
支持数据结构 ValueState、ListState、MapState等 ListState、BroadcastState等

二、常见状态相关处理流程

2.1 Flink 应用中状态是如何存储的?

1. Kafka Source 如何存储 OperatorState?

class FlinkKafkaConsumerBase {
 private transient ListState<Tuple2<KafkaTopicPartition, Long>> unionOffsetStates; // state名称:"topic-partition-offset-states"
// 特殊的State类型:Union State 
}


unionOffsetStates这个变量就是 OperatorState类型的。

2. Map算子如何存储需要累计的数据?

  • ValueState/MapState/ListState/......

思考:keyby 后的数据分发与多并行度 subtask 之间的关系是怎样的?

首先,datastream 中数据经过 keyby 之后,会划分到各个 KeyedStream 中。每个 KeyedStream 有自己的 KeyedState(如ValueState/ListState/MapState)。

其次,KeyedStream 中的数据会以 KeyGroup 方式组织在一起。KeyGroup 是 Flink 重新分发 key state 的最小单元。

最后,KeyGroup 中的数据会通过取模最大并行度的方式分散到各个 subtask 中。以下是关键源码:

KeyGroupStreamPartitioner#selectChannel(record)
{
    K key;
    key = keySelector.getKey(record.getInstance().getValue());
    return KeyGroupRangeAssignment.assignKeyToParallelOperator(
            key, maxParallelism, numberOfChannels);
}
--KeyGroupRangeAssignment#assignKeyToParallelOperator()
    {
    return computeOperatorIndexForKeyGroup(maxParallelism, parallelism, assignToKeyGroup(key, maxParallelism));
    }
    --KeyGroupRangeAssignment#computeOperatorIndexForKeyGroup()
      公式:OperatorIndex = keyGroupId * parallelism / maxParallelism
    --KeyGroupRangeAssignment#assignToKeyGroup()
      {
        return computeKeyGroupForKeyHash(key.hashCode(), maxParallelism);
       }




2.2 修改并行度场景时 State 状态存储的变化

2.3 State 与 Checkpoint 关系

分布式快照 Checkpoint 的概念,定期将 State 持久化到 外部存储系统(HDFS/OSS) 上。用户可以通过实现 CheckpointedFunction 接口来使用 operator state。通过 barrier 来对齐 checkpoint,等待 State 持久化完成(此过程参数不同也可能是异步的)。

常见 State 与 CP 相关的问题

  • State 状态过大。现象为多个算子或单个算子多个 subtask 做 checkpoint 慢,可导致 CP 对齐时间长,严重时会导致 CP 超时。
  • 数据倾斜导致某个 subtask 处理不及时。现象为单个算子少数几个 subtask 做 checkpoint 慢,导致 CP 对齐时间长。严重时会导致 CP 超时。
  • 大作业(并行度搞)频繁做 CP,会频繁上传小文件,导致 HDFS 集群小文件过多。

常用解决措施:调大托管内存大小。

三、参考文档:

  • Flink State 官方文档:Flink 状态与容错
  • https://cloud.tencent.com/developer/article/1403939
  • https://www.modb.pro/db/81206

作者:京东物流 吴云涛

来源:京东云开发者社区 自猿其说Tech 转载请注明来源文章来源地址https://www.toymoban.com/news/detail-748909.html

到了这里,关于Flink State 状态原理解析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Flink State backend状态后端

    Flink在v1.12到v1.14的改进当中,其状态后端也发生了变化。老版本的状态后端有三个,分别是MemoryStateBackend、FsStateBackend、RocksDBStateBackend,在flink1.14中,这些状态已经被废弃了,新版本的状态后端是 HashMapStateBackend、EmbeddedRocksDBStateBackend。 有状态流应用中的检查点(checkpoint),

    2024年01月25日
    浏览(44)
  • Flink状态详解:什么是时状态(state)?状态描述(StateDescriptor)及其重要性

    了解Flink中的状态概念及其在流处理中的重要性。探讨状态在有状态计算中的作用,状态描述符(StateDescriptor)的基本概念和用法。理解状态在Flink任务中的维护、恢复和与算子的关联。

    2024年02月08日
    浏览(46)
  • Flink理论—容错之状态后端(State Backends)

    Flink 使用流重放 和 检查点 的组合来实现容错。检查点标记每个输入流中的特定点以及每个运算符的相应状态。通过恢复运算符的状态并从检查点点重放记录,可以从检查点恢复流数据流,同时保持一致性 容错机制不断地绘制分布式流数据流的快照。对于小状态的流式应用程

    2024年02月20日
    浏览(39)
  • 【Apache-Flink零基础入门】「入门到精通系列」手把手+零基础带你玩转大数据流式处理引擎Flink(基础概念解析+有状态的流式处理)

    Apache Flink 是业界公认的最佳流计算引擎之一,它不仅仅局限于流处理,而是一套兼具流、批、机器学习等多种计算功能的大数据引擎。Flink 的用户只需根据业务逻辑开发一套代码,就能够处理全量数据、增量数据和实时数据,无需针对不同的数据类型开发不同的方案。这使得

    2024年02月03日
    浏览(89)
  • 状态设计模式(State Pattern)[论点:概念、相关角色、图示、示例代码、框架中的运用、适用场景]

            状态模式 (State Pattern)是一种行为型设计模式,用于解决对象在不同状态下的行为问题。它允许一个对象在其内部状态改变时改变它的行为。状态模式主要包含三个部分: 上下文 (Context)、 状态接口 (State)和 具体状态实现类 (ConcreteState)。 状态接口(St

    2023年04月14日
    浏览(45)
  • 【Vuex状态管理】Vuex的基本使用;核心概念State、Getters、Mutations、Actions、Modules的基本使用

    在开发中,应用程序需要处理各种各样的数据,这些数据需要保存在应用程序中的某一个位置,对于这些数据的管理就称之为是 状态管理。 在前面是如何管理自己的状态呢? 在Vue开发中,使用组件化的开发方式; 而在组件中定义data或者在setup中返回使用的数据,这些数据称

    2024年02月07日
    浏览(47)
  • 回声状态网络(Echo State Networks,ESN)详细原理讲解及Python代码实现

    回声状态网络是一种循环神经网络。ESN 训练方式与传统 RNN 不同。网络结构如下图: (1)储层(Reservoir):中文翻译有叫储备池、储层、储蓄池等等各种名称。ESN 中的储层是互连神经元的集合,其中连接及其权重是随机初始化和固定的。该储层充当动态储层,其目的是将输

    2024年04月17日
    浏览(42)
  • 【设计模式——学习笔记】23种设计模式——状态模式State(原理讲解+应用场景介绍+案例介绍+Java代码实现)

    请编写程序完成APP抽奖活动具体要求如下: 假如每参加一次这个活动要扣除用户50积分,中奖概率是10% 奖品数量固定,抽完就不能抽奖 活动有四个状态: 可以抽奖、不能抽奖、发放奖品和奖品领完,活动的四个状态转换关系图如下 一开始的状态为“不能抽奖”,当扣除50积分

    2024年02月12日
    浏览(49)
  • Flink学习笔记(一):Flink重要概念和原理

        Apache Flink是一个框架和分布式处理引擎,用于对无限制和有限制的数据流进行有状态的计算。Flink被设计为可以在所有常见的集群环境中运行,以内存速度和任何规模执行计算。 官网:https://flink.apache.org/ 官网中文:https://flink.apache.org/zh/ Flink 开发文档:https://nightlies.

    2024年02月06日
    浏览(52)
  • Flink CEP (一)原理及概念

    目录 1.Flink CEP 原理 2.Flink API开发 2.1 模式 pattern 2.2 模式 pattern属性 2.3 模式间的关系   Flink CEP内部是用 NFA(非确定有限自动机) 来实现的,由点和边组成的一个状态图,以一个初始状态作为起点,经过一系列的中间状态,达到终态。点分为 起始状态 、 中间状态 、 最终状

    2024年02月16日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包