深度学习YOLO安检管制物品识别与检测 - python opencv 计算机竞赛

这篇具有很好参考价值的文章主要介绍了深度学习YOLO安检管制物品识别与检测 - python opencv 计算机竞赛。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习YOLO安检管制误判识别与检测 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate文章来源地址https://www.toymoban.com/news/detail-751528.html

1 课题背景

军事信息化建设一直是各国的研究热点,但我国的武器存在着种类繁多、信息散落等问题,这不利于国防工作提取有效信息,大大妨碍了我军信息化建设的步伐。同时,我军武器常以文字、二维图片和实体武器等传统方式进行展示,交互性差且无法满足更多军迷了解武器性能、近距离观赏或把玩武器的迫切需求。本文将改进后的Yolov5算法应用到武器识别中,将武器图片中的武器快速识别出来,提取武器的相关信息,并将其放入三维的武器展现系统中进行展示,以期让人们了解和掌握各种武器,有利于推动军事信息化建设。

2 实现效果

检测展示
深度学习YOLO安检管制物品识别与检测 - python opencv 计算机竞赛,python,java

3 卷积神经网络

简介

卷积神经网络 (CNN)
是一种算法,将图像作为输入,然后为图像的所有方面分配权重和偏差,从而区分彼此。神经网络可以通过使用成批的图像进行训练,每个图像都有一个标签来识别图像的真实性质(这里是猫或狗)。一个批次可以包含十分之几到数百个图像。

对于每张图像,将网络预测与相应的现有标签进行比较,并评估整个批次的网络预测与真实值之间的距离。然后,修改网络参数以最小化距离,从而增加网络的预测能力。类似地,每个批次的训练过程都是类似的。
深度学习YOLO安检管制物品识别与检测 - python opencv 计算机竞赛,python,java

相关代码实现

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')

flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)

4 Yolov5

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:
深度学习YOLO安检管制物品识别与检测 - python opencv 计算机竞赛,python,java

网络架构图

深度学习YOLO安检管制物品识别与检测 - python opencv 计算机竞赛,python,java

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

Mosaic数据增强
:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错
深度学习YOLO安检管制物品识别与检测 - python opencv 计算机竞赛,python,java

基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

深度学习YOLO安检管制物品识别与检测 - python opencv 计算机竞赛,python,java
深度学习YOLO安检管制物品识别与检测 - python opencv 计算机竞赛,python,java

FPN+PAN的结构
深度学习YOLO安检管制物品识别与检测 - python opencv 计算机竞赛,python,java
这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:

==>40×40×255==>20×20×255==>10×10×255

深度学习YOLO安检管制物品识别与检测 - python opencv 计算机竞赛,python,java

  • 相关代码

      class Detect(nn.Module):
      stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter
        
      def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
          super().__init__()
          self.nc = nc  # number of classes
          self.no = nc + 5  # number of outputs per anchor
          self.nl = len(anchors)  # number of detection layers
          self.na = len(anchors[0]) // 2  # number of anchors
          self.grid = [torch.zeros(1)] * self.nl  # init grid
          self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
          self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
          self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)
        
      def forward(self, x):
          z = []  # inference output
          for i in range(self.nl):
              x[i] = self.m[i](x[i])  # conv
              bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
        
    
              if not self.training:  # inference
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                      self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
        
                  y = x[i].sigmoid()
                  if self.inplace:
                      y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                      y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                  else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                      xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                      wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                  z.append(y.view(bs, -1, self.no))
      
          return x if self.training else (torch.cat(z, 1), x)
    
      def _make_grid(self, nx=20, ny=20, i=0):
          d = self.anchors[i].device
          if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
              yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
          else:
              yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
          grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
          anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
              .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
          return grid, anchor_grid
    

5 模型训练

训练效果如下
深度学习YOLO安检管制物品识别与检测 - python opencv 计算机竞赛,python,java
相关代码

#部分代码
def train(hyp, opt, device, tb_writer=None):
    print(f'Hyperparameters {hyp}')
    log_dir = tb_writer.log_dir if tb_writer else 'runs/evolve'  # run directory
    wdir = str(Path(log_dir) / 'weights') + os.sep  # weights directory
    os.makedirs(wdir, exist_ok=True)
    last = wdir + 'last.pt'
    best = wdir + 'best.pt'
    results_file = log_dir + os.sep + 'results.txt'
    epochs, batch_size, total_batch_size, weights, rank = \
        opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.local_rank
    # TODO: Use DDP logging. Only the first process is allowed to log.

    # Save run settings
    with open(Path(log_dir) / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(Path(log_dir) / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check

    # Remove previous results
    if rank in [-1, 0]:
        for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
            os.remove(f)

    # Create model
    model = Model(opt.cfg, nc=nc).to(device)

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples

    # Optimizer
    nbs = 64  # nominal batch size
    # default DDP implementation is slow for accumulation according to: https://pytorch.org/docs/stable/notes/ddp.html
    # all-reduce operation is carried out during loss.backward().
    # Thus, there would be redundant all-reduce communications in a accumulation procedure,
    # which means, the result is still right but the training speed gets slower.
    # TODO: If acceleration is needed, there is an implementation of allreduce_post_accumulation
    # in https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/run_pretraining.py
    accumulate = max(round(nbs / total_batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        if v.requires_grad:
            if '.bias' in k:
                pg2.append(v)  # biases
            elif '.weight' in k and '.bn' not in k:
                pg1.append(v)  # apply weight decay
            else:
                pg0.append(v)  # all else

    if opt.adam:
        optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)

    optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, 

6 实现效果

深度学习YOLO安检管制物品识别与检测 - python opencv 计算机竞赛,python,java

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

到了这里,关于深度学习YOLO安检管制物品识别与检测 - python opencv 计算机竞赛的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 毕业设计选题-基于深度学习的吸烟检测识别系统 人工智能 机器学习 YOLO

    目录 前言 课题背景和意义 实现技术思路 一、 吸烟检测方法 1.1 网络总体结构 1.2 CotNet Transformer 模块 二、 数据集 三、实验及结果分析 3.1 实验环境搭建 3.2 结果分析 实现效果图样例 最后     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就

    2024年01月20日
    浏览(101)
  • 物联网选题分享 - 单片机机器视觉人体识别小车 - 深度学习 yolo目标检测 人体识别 树莓派

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月19日
    浏览(50)
  • 目标检测YOLO实战应用案例100讲-基于深度学习的交通标志小目标检测与识别研究

    目录 前言 目标检测算法相关理论  2.1 深度学习理论基础  2.1.2卷积神经网络 

    2024年02月11日
    浏览(50)
  • 深度学习毕设项目 深度学习实现行人重识别 - python opencv yolo Reid

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月22日
    浏览(45)
  • 深度学习毕设项目 深度学习人体跌倒检测 -yolo 机器视觉 opencv python

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月02日
    浏览(56)
  • 竞赛选题 深度学习实现行人重识别 - python opencv yolo Reid

    🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习的行人重识别算法研究与实现 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:5分 🧿 更多资料, 项目分享: https://

    2024年02月05日
    浏览(43)
  • 竞赛 深度学习YOLO图像视频足球和人体检测 - python opencv

    🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习YOLO图像视频足球和人体检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:5分 🧿 更多资料, 项目分享: https://gitee.com/dan

    2024年02月07日
    浏览(46)
  • 计算机设计大赛 深度学习YOLO抽烟行为检测 - python opencv

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习YOLO抽烟行为检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-sen

    2024年02月22日
    浏览(106)
  • 软件杯 深度学习YOLO图像视频足球和人体检测 - python opencv

    🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习YOLO图像视频足球和人体检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:5分 🧿 更多资料, 项目分享: https://gitee.com/dan

    2024年04月11日
    浏览(42)
  • 竞赛选题 深度学习YOLO图像视频足球和人体检测 - python opencv

    🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习YOLO图像视频足球和人体检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:5分 🧿 更多资料, 项目分享: https://gitee.com/dan

    2024年02月07日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包