大数据基础技能入门指南

这篇具有很好参考价值的文章主要介绍了大数据基础技能入门指南。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

大数据基础技能入门指南,大数据

本文介绍了数据工作中数据基础和复杂数据查询两个基础技能。

大数据基础技能入门指南,大数据

背景

当下,不管是业务升级迭代项目,还是体验优化项目,对于数据的需求都越来越大。数据需求主要集中在以下几个方面:

  1. 项目数据看板搭建:特别是一些AB实验的看板,能直观呈现项目的核心数据变化

  2. 数据分析:项目启动前的探索挖掘以及项目后的效果分析
    但是,眼下存在的一个普遍矛盾是:日益增长的数据需求和落后的数据生产力之前的矛盾

俗话说,求人不如求己,掌握基础的数据技能对于技术同学(尤其是开发岗位的同学)并不是一件难事,只是缺少一个合适的入门指南。本文旨在让想学习数据处理的同学能快速入门。

大数据基础技能入门指南,大数据

基础技能

  数据基础

这一部分先介绍MaxCompute(原odps)平台进行数据处理开发的基础知识。

  • 表基础

表(table)是数据处理的起点和终点,因此能看懂别人的表,会创建自己的表是数据处理技能中最最基础的一环。

表的创建和修改

创建临时表:

-- 临时表命名建议以“tmp_”开头,odps会知道该表是临时表
-- 临时表的生命周期建议按需设置,不要设置太长,避免资源浪费
CREATE TABLE tmp_ut_cart_clk LIFECYCLE 7 AS 
SELECT  user_id
FROM    <用户浏览数据表>

创建正式表:

-- analytics_dw是odps的空间名,后面的是表名
-- 空间名.表名 才能确定唯一的数据表
-- 以下是一个实际案例
CREATE TABLE IF NOT EXISTS analytics_dw.ads_tb_biz_request_opt_1d
(
    bucket_id                       STRING COMMENT '分桶'
    ,os                             STRING COMMENT '系统'
    ,uv                             BIGINT COMMENT '分桶用户数'
    ,pv                             BIGINT COMMENT '页面访问pv'
    ,page_stay_time                 BIGINT COMMRNT '页面停留时间(ms)'
    ...
)
PARTITIONED BY       -- 分区
(
    ds                              STRING COMMENT '日期'
)
LIFECYCLE 30
;

注意 PARTITIONED BY 这是指定分区字段。分区在odps的数据处理中很重要,合理的选择分区会让数据查询速度快非常多。

简单理解 分区 就是文件目录的概念,目录信息越精确,需要查询的原始数据就越少,查询效率自然越高。

大数据基础技能入门指南,大数据

表的命名

如果我们计划要做一张需要定期更新并供他人使用的表,那么表的命名必须要符合一定规范。简单提炼下,我们日常数据处理经常遇到的表大概有4种:

类型

命名前缀

说明

维表

dim_xxxx

提供一些维度信息,一般是让其他表关联来补足部分信息

明细表

dwd_xxxx

经过清洗,过滤,字段处理过的表。仅仅是对客观行为的描述。是数据处理分析的基础

轻度汇总表

dws_xxxx

为了方面后续的数据分析,对部分维度进行聚合计算。讲大白话就是对dwd的部分维度进行group by聚合,轻度聚合表会丢失部分不那么重要的信息,能为后续的分析提供便利

应用层表

ads_xxxx

为上层应用提供数据的表。到了这一层,表中的数据基本不具备继续加工处理的能力。这些表中的数据一般都是用来配置报表,或者用来辅助决策的制定

对于开发同学来说,在需要我们自己创建表的情况下一般都是ads类型的表,表的命名可以按照下面的格式:

<空间名>.ads_<业务><二级业务/如有><功能/实验><数据统计周期/1d/7d/30d等等>

  • 基础查询

基础查询是数据处理的基础,这一步的主要工作包括数据的清洗和过滤,字段的加工拓展,为后续的数据处理打好坚实基础

下面是一个非常非常基础的查询sql:

SET odps.sql.mapper.split.size=2048; -- 默认是256(单位M)




SELECT  user_id
        ,page 
        ,time_stamp
        ...
FROM    <App用户使用明细表>
WHERE   ds = '${bizdate}'
AND     product = '<App名称>'
AND     event_type = '<事件类型:浏览\点击>'
AND     page = '<页面标识>'
;

如果查询的数据量巨大,那么查询时可能会遇到下面这个错误:

FAILED: ODPS-0130071:[0,0] Semantic analysis exception - physical plan generation failed: java.lang.RuntimeException: com.aliyun.odps.lot.cbo.plan.splitting.disruptor.InstExceedLimitException: task:M1 instance count exceeds limit 99999

这是因为odps是根据 数据存储大小/splitSize 来确定需要的实例数,但有个99999的上限,超限了就会报错。这时适当将splitSize调大一点即可(可以每次*2的幅度来调整)

字符串处理

查询过程中常见的字符串处理方法:

-- 单个条件
SELECT  IF(page = 'Page_XXX', 'y', 'n') AS is_page_xxx 


        -- 多个条件
        ,CASE WHEN hh <= 12 THEN '上午'
              WHEN hh > 12 AND hh <= 18 THEN '下午'
              ELSE '晚上'
        END AS 时间段


        -- 超级有用:提取args中的kv
        ,KEYVALUE(args, ',', '=', 'itemid') AS item_id


        -- 分割字符串(value为“a_b_c”这种有规律的字符串可以使用)
        ,SPLIT(value, '_') AS value_list  -- 这个是数组,可以使用索引 value_list[0]


        -- 去除空值(使用a,b,c中第一个不为NULL的值,否则用最后的空字符串)
        ,COALESCE(a, b, c, '') AS xxx


        -- 版本比较,超级实用
        ,IF(bi_udf:bi_yt_compare_version(app_version, '10.24.10') >= 0, 'y', 'n') AS is_target_version




        -- 解析JSON,提取目标信息
        ,GET_JSON_OBJECT(json_str, '$.section.item.name') AS item_name


        -- 类型转换
        ,CAST(user_id AS BIGINT) AS user_id


        -- 大小写转换
        ,TOUPPER(os) , TOLOWER(os)
日期处理

字符串处理中有关于日期时间的处理也比较常见,比如“查询最近7天的数据”,关于日期的常用函数如下:

-- 日期格式描述
  yyyy    年,4位
  MM      月,2位
  dd    日,2位
  hh/HH    12小时制/24小时制,2位
  mi    分钟,2位
  ss    秒,2位
  SSS    毫秒,3位
-- 通过上面这些格式就能在转化具体的日期时描述日期的格式:
20230807             yyyyMMdd
2023-08-07          yyyy-MM-dd
20230806 13:22:00            yyyyMMdd HH:mi:si




-- 单纯查询某个日期之前或者之后的数据
ds >= '20230807'




TO_DATE('20230807', 'yyyyMMdd')       -- 将日期字符串转为 datetime 实例,日期处理的基础


TO_CHAR(datetime, 'yyyyMMdd')          -- 将日期函数处理得到各种datetime转换为字符串


FROM_UNIXTIME(123456789)         -- 将unix时间戳转换成datetime对象      


-- 日期加减,自动处理进位关系
DATEADD(TO_DATE('20230807', 'yyyyMMdd'), 7, 'dd')    -- 20230814
DATEADD(TO_DATE('20230807', 'yyyyMMdd'), -7, 'dd')   -- 20230731


-- 2个日期间隔(第一个日期-第二个日期,结果可为负)
DATEDIFF(TO_DATE('20230807', 'yyyyMMdd'), TO_DATE('20230806', 'yyyyMMdd'), 'dd') -- 1


-- 提取指定时间
-- 在希望分小时段统计的场景下很实用
DATEPART(TO_DATE('2023-08-07 12:13:22', 'yyyy-MM-dd hh:mi:ss'), 'hh') -- 12
  • 关联查询

很多时候单一表的数据无法满足我们的需求,需要通过其他表来补充一些信息,这时就需要关联数据。在sql上表现为有Join操作。

常用的关联操作有 LEFT JOIN、RIGHT JOIN、INNER JOIN

-- 基本的join语法如下
SELECT  a.user_id 
        ,a.arg1
        ,a.args
        ,b.bucket_id
FROM    (
    SELECT  user_id
          ,arg1
          ,args 
  FROM  <用户手淘行为表>
) a
LEFT JOIN (
    SELECT  user_d
            ,bucket_id 
  FROM  <AB实验分流表>
) b
ON    a.user_id = b.user_id
;


-- left join、right join、inner join差别


left join:会保留左表的所有数据(在上面这个例子中左表就是 a,join左边的表),右表中没有匹配的数据将会丢失
right join:和left join相反会保留右表(b)的所有数据,左表中没有匹配的数据会丢失
inner join:最终只有两个表的交集部分会被保留下来

Join操作很容易出错,导致查询结果出错,而且这种错误有时非常隐蔽难以发现。主要原因就是匹配条件遗漏或者关联字段有重复值,出现多对多的情况,导致数据膨胀,进而影响了统计结果。为了避免出现问题,有几个建议:

  1. a、b表关联前先进行必要的数据清洗和去重,而不是先关联后处理

  2. 如果a、b表都是数据量很大的表,建议先随机抽取小样本数据生成临时表a'、b',然后对比最终表数据量和a'、b'的数据量大小是否符合预期

特别地,在小表关联大表的情况下,可以使用MapJoin提升效率,比如在一个每日成交表中有商品的类目信息,现在需要关联到对应的行业信息,而类目和行业的映射关系是一个很小的表,这种情况下就可以使用MapJoin提升任务的执行效率。

SELECT  /* + mapjoin(J2) */
        J1.*
        ,J2.industry
FROM    <订单表> J1
LEFT JOIN  
(
    SELECT  cate_level1_id
            ,industry
    FROM    <行业维表>
    WHERE   ds = '${bizdate}'
) J2
ON J1.cate_level1_id = J2.cate_level1_id
;
  • 聚合查询

聚合就是针对数据中的某些维度(系统、版本等)执行一系列计算返回单一值。一般在sql上体现为有Group By操作。一般我们数据处理(指标计算)的最后几步都离不开聚合操作。

-- 常见聚合函数
AVG(age) AS avg_age )    -- 平均值


SUM(cnt) AS total_cnt    -- 求和


MIN(age) AS min_age      -- 最小值


MAX(age) AS max_age      -- 最大值


COUNT(*) / COUNT(item_id)  -- 计数 count(*)不会忽略null,count(xx)会忽略null


COUNT(DISTINCT utdid)      -- 去重计数


COLLECT_SET(item_id)       -- 将去重后的item_id存在一个数组中


COLLECT_ARRAY(item_id)     -- 将item_id存在一个数组中(不去重)


PERCENTILE(duration, 0.95)  -- 求分位数

通常,我们在执行聚合时可能会有一些特殊的需求,比如我们想查询每日成交中每个省份的GMV同时还想查询所有省份的整体GMV。正常可能需要这么写:

SELECT  province  
    ,SUM(amount) AS gmv
FROM  <每日成交表>
GROUP BY province


UNION ALL


SELECT  '整体' AS province  
    ,SUM(amount) AS gmv
FROM  <每日成交表>

维度少的时候这么写没问题,但考虑下这个需求,我们想看每个省下面的每个城市的gmv,同时也想看这个省整体的gmv,同时也想看所有省份的gmv,这时再用上面的写法就会很繁琐。这时可以考虑使用CUBE或者GROUPING SETS来简化查询逻辑:

SELECT  IF(GROUPING(province) == 0, province, 'all') AS province
        ,IF(GROUPING(city) == 0, city, 'all') AS city
        ,SUM(amount) AS gmv
FROM  <每日成交表>
GROUP BY GROUPING SETS((), (province), (province, city))


  -- 下面是CUBE的示例


SELECT  IF(GROUPING(province) == 0, province, 'all') AS province
        ,IF(GROUPING(city) == 0, city, 'all') AS city
        ,SUM(amount) AS gmv
FROM  <每日成交表>
GROUP BY CUBE(province, city)


-- 说明:
-- GROUPING SETS:按照制定维度组合来做聚合
-- CUBE:按照相关维度的全排列来做聚合

最后再强调一句:数据查询时 一定要指定分区 一定要指定分区 一定要指定分区

  复杂数据查询

很多同学其实是具备sql的基本知识的,但是一旦数据查询稍微变复杂一点,就有点束手无策。这个很正常,因为复杂sql的可读性、可维护性本来就很。和开发思路类似解决这个问题的方法就是将复杂的逻辑的拆解为简单的过程,减少查询的套娃。个人推荐的方法主要有:临时表、odps script、cte表达式三种方式。

  • 临时表(临时查询使用)

将复杂过程的查询过程拆解,每个过程的查询结果保存为一张临时表,直至最终完成整个查询逻辑。这个方法在做数据分析时特别好用。

一般我们都是以天为单位来分析数据,可以按照下面的模板来做:

-- 步骤1 甚至可以写注释方面以后理解
-- 建议将关心的原始数据先清洗处理保存为临时表,方便后面做各种分析使用,提升效率
DROP TABLE IF EXISTS tmp_step1_${bizdate};
CREATE TABLE tmp_step1_${bizdate} LIFECYCLE 3 AS  -- 临时表生命周期不要设置太久,避免无意义的资源浪费
SELECT  a
        ,b
        ,c
FROM  <数据表1>
WHERE  <筛选条件>
;


-- 步骤2
DROP TABLE IF EXISTS tmp_step2_${bizdate};
CREATE TABLE tmp_step2_${bizdate} LIFECYCLE 3 AS 
SELECT  a
        ,b
        ,c
FROM  tmp_step1_${bizdate} 
;


-- ....


-- 关注的结果
SELECT  *
FROM  tmp_stepN_${bizdate}
GROUP BY xxx
;

说明:

  1. 临时表查询最好能写成无脑一键执行就能获得最终结果,这能节省大量的时间

  2. ${xxx} odps的参数写法,可以在执行sql前制定对应参数的值,然后替换掉整个sql中的对应参数,本质是字符串替换,一个sql中可以出现多个参数

  3. 为了让sql能反复执行,建表前需要确保相应的表没有被创建过(DROP TABLE)

  • ODPS SCRIPT(有局限性,不推荐)

有cte表达式后,不推荐该方法。简单示例如下:

@step1 :=
SELECT   XX 
FROM   XXXX;


@step2 :=
SELECT   YY 
FROM   @step1;
....


SELECT  *
FROM  @stepN;
  • CTE表达式(强力推荐,用过都说好)

CTE能让我们将复杂任务拆解,提升SQL的可读性、可维护性。此外CTE不仅可以用于临时查询,也能将任务发布为周期任务。日常的数据处理可以使用下面的模板:

WITH
step1 AS
(
  SELECT  XX
  FROM    XXXX
),


step2 AS 
(
  SELECT  YY
  FROM    step1
),


....


stepN AS 
(
  SELECT  ...
)                   -- 最后的这括号后面不要加 , 


INSERT OVERWRITE TABLE <存储表名> PARTITION (ds = '${bizdate}')  -- 一个WITH只支持一个INSERT
SELECT  *
FROM  stepN

大数据基础技能入门指南,大数据

写在最后

数据处理并不是神秘、难以掌握的技能。每个技术同学、产品同学都是可以学会基本的数据处理技能的。希望本文能帮助有需要的同学叩开数据处理的大门。

大数据基础技能入门指南,大数据

团队介绍

我们是大淘宝技术「基础交易终端团队」,主要负责电商核心交易链路业务和平台的研发,包含:淘宝购物车、下单、订单、物流、逆向等电商核心基础能力及创新型业务。这里有世界一流的技术产品,有丰富的业务场景,服务于十亿级的消费者,这里有巨大的挑战等你来。作为阿里的一支明星团队,负责阿里电商平台的核心交易主链路,是阿里移动技术的基石,每年双十一核心链路保障。

现招聘移动端(Android/iOS)开发工程师,有前端开发经验者优先,有意者可以投递简历到:guzhan.pc@taobao.com

¤ 拓展阅读 ¤

3DXR技术 | 终端技术 | 音视频技术

服务端技术 | 技术质量 | 数据算法文章来源地址https://www.toymoban.com/news/detail-751790.html

到了这里,关于大数据基础技能入门指南的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Oracle 基础入门指南

      Oracle是一款由美国Oracle公司开发的关系型数据库管理系统。它支持SQL查询语言,并提供了丰富的功能和工具,用于管理大规模数据存储、处理和访问。Oracle被广泛应用于企业级应用中,包括金融、电信、零售等各行各业。 要开始学习Oracle,首先需要在计算机上安装Oracle数据

    2024年02月19日
    浏览(36)
  • 计算机视觉基础入门指南

            计算机视觉是一门研究如何使计算机能够“看”和理解图像或视频的学科。随着人工智能的快速发展,计算机视觉在各个领域的应用越来越广泛。本文将为您介绍计算机视觉的基本概念、应用领域以及学习路径,帮助您快速入门这一领域。 图像处理:对图像进行预处

    2024年04月11日
    浏览(41)
  • AI绘图-Midjourney零基础入门指南

    Midjourney 是除 Disco Difussion 和 Dall·E 2 之外又一个比较优秀的 AI 图像生成器,它综合能力全面,虽然图像的精准度及艺术性不及 Disco Difussion,但易上手程度比 Disco Difussion 好很多,图像生成速度极快 1 分钟内出 4 张图,国外很多艺术家都使用 Midjourney 生成自己想要图像作为创

    2024年02月04日
    浏览(43)
  • MySQL主从复制入门指南:基础概念和配置步骤

    为了巩固所学的知识,作者尝试着开始发布一些学习笔记类的博客,方便日后回顾。当然,如果能帮到一些萌新进行新技术的学习那也是极好的。作者菜菜一枚,文章中如果有记录错误,欢迎读者朋友们批评指正。 (博客的参考源码可以在我主页的资源里找到,如果在学习的

    2024年02月14日
    浏览(44)
  • 接口测试入门指南:从基础到实战的全面解析

    深入了解接口测试的重要性和基本原理。掌握HTTP请求、状态码、测试模板等关键知识点,通过实战案例快速成为高级测试员。

    2024年03月18日
    浏览(52)
  • “C++基础入门指南:了解语言特性和基本语法”

    C++是在C的基础之上,容纳进去了面向对象编程思想,并增加了许多有用的库,以及编程范式 等。熟悉C语言之后,对C++学习有一定的帮助 工作之后,看谁的技术牛不牛逼,不用看谁写出多牛逼的代码,就代码风格扫一眼,立刻就能看出来是正规军还是野生的程序员。代码的风

    2024年02月16日
    浏览(38)
  • Go语言入门指南:基础语法和常用特性(下)

    上一节,我们了解Go语言特性以及第一个Go语言程序——Hello World,这一节就让我们更深入的了解一下Go语言的**基础语法**吧! 在 Go 程序中,一行代表一个语句结束。每个语句不需要像 C 家族中的其它语言一样以分号 ; 结尾,因为这些工作都将由 Go 编译器自动完成。 建议不要

    2024年02月12日
    浏览(43)
  • Go 语言入门指南:基础语法和常用特性解析

    代码解释: 变量声明和初始化: var a = \\\"initial\\\" :声明一个名为 a 的变量,初始值为字符串 “initial”。 var b, c int = 1, 2 :声明两个整数变量 b 和 c ,并分别初始化为 1 和 2。 var d = true :声明一个布尔变量 d ,初始值为 true 。 var e float64 :声明一个浮点数变量 e ,因为没有显

    2024年02月11日
    浏览(44)
  • 爬虫入门指南(1):学习爬虫的基础知识和技巧

    什么是爬虫? 爬虫是一种自动化程序,用于从互联网上获取数据。它通过模拟浏览器行为,访问指定的网页,并从中提取所需的信息。爬虫工作的核心是发送HTTP请求、获取网页内容、解析网页结构并提取数据。 爬虫的工作原理 爬虫的工作原理可以分为以下几个步骤: 发送

    2024年02月12日
    浏览(39)
  • QSS盒子模型入门指南:了解和应用基础知识

    #概述 QSS(Qt Style Sheets)是一种用于美化和定制化Qt应用程序的样式表语言。了解和掌握QSS盒子模型的基本概念对于创建漂亮的用户界面布局至关重要。本文将详细介绍QSS盒子模型的各个组成部分,并提供一些入门级的示例,帮助您快速掌握盒子模型的基础知识。 在QSS盒子模

    2024年02月07日
    浏览(72)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包