【算法优选】 动态规划之路径问题——贰

这篇具有很好参考价值的文章主要介绍了【算法优选】 动态规划之路径问题——贰。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🎋前言

动态规划相关题目都可以参考以下五个步骤进行解答:

  1. 状态表⽰

  2. 状态转移⽅程

  3. 初始化

  4. 填表顺序

  5. 返回值

后面题的解答思路也将按照这五个步骤进行讲解。

🌲下降最小路径和

🚩题目描述

给你一个 n x n 的 方形 整数数组 matrix ,请你找出并返回通过 matrix 的下降路径 的 最小和 。

下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)、(row + 1, col) 或者 (row + 1, col + 1) 。

  • 示例 1:

【算法优选】 动态规划之路径问题——贰,算法优选,算法,动态规划,java
输入:matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出:13
解释:如图所示,为和最小的两条下降路径

  • 示例 2:

【算法优选】 动态规划之路径问题——贰,算法优选,算法,动态规划,java
输入:matrix = [[-19,57],[-40,-5]]
输出:-59
解释:如图所示,为和最小的下降路径

class Solution {
    public int minFallingPathSum(int[][] matrix) {

    }
}

🚩算法思路:

关于这⼀类题,由于我们做过类似的,因此「状态表⽰」以及「状态转移」是⽐较容易分析出来的。
⽐较难的地⽅可能就是对于「边界条件」的处理。

  1. 状态表⽰:
    对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
    • 从 [i, j] 位置出发,到达⽬标位置有多少种⽅式;
    • 从起始位置出发,到达 [i, j] 位置,⼀共有多少种⽅式

这⾥选择第⼆种定义状态表⽰的⽅式:
dp[i][j] 表⽰:到达 [i, j] 位置时,所有下降路径中的最⼩和。

  1. 状态转移⽅程:
    对于普遍位置 [i, j] ,根据题意得,到达 [i, j] 位置可能有三种情况:
    • 从正上⽅ [i - 1, j] 位置转移到 [i, j] 位置;
    • 从左上⽅ [i - 1, j - 1] 位置转移到 [i, j] 位置;
    • 从右上⽅ [i - 1, j + 1] 位置转移到 [i, j] 位置;

我们要的是三种情况下的「最⼩值」,然后再加上矩阵在 [i, j] 位置的值。于是 dp[i][j] = min(dp[i - 1][j], min(dp[i - 1][j - 1], dp[i - 1][j +1])) + matrix[i][j] 。

  1. 初始化:
    可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
    • 辅助结点⾥⾯的值要「保证后续填表是正确的」;
    • 「下标的映射关系」。

在本题中,需要「加上⼀⾏」,并且「加上两列」。所有的位置都初始化为⽆穷⼤,然后将第⼀⾏初始化为0 即可。

  1. 填表顺序:
    根据「状态表⽰」,填表的顺序是「从上往下」。

  2. 返回值:
    注意这⾥不是返回 dp[m][n] 的值!

题⽬要求「只要到达最后⼀⾏」就⾏了,因此这⾥应该返回「dp表中最后⼀⾏的最⼩值」。

🚩代码实现

class Solution {
    public int minFallingPathSum(int[][] matrix) {
        // 1. 创建 dp 表
        // 2. 初始化
        // 3. 填表
        // 4. 返回结果
        int n = matrix.length;
        int[][] dp = new int[n + 1][n + 2];
        for(int i = 1; i <= n; i++) {
            dp[i][0] = dp[i][n + 1] = Integer.MAX_VALUE;
        }
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= n; j++) {
                dp[i][j] = Math.min(dp[i - 1][j], Math.min(dp[i - 1][j - 1],dp[i - 1][j + 1])) + matrix[i - 1][j - 1];
            }
        }
    
        int ret = Integer.MAX_VALUE;
        for(int j = 1; j <= n; j++) {
            ret = Math.min(ret, dp[n][j]);
        }
        return ret;
    }
}

🎍最小路径和

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

  • 示例 1:
    【算法优选】 动态规划之路径问题——贰,算法优选,算法,动态规划,java
    输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
    输出:7
    解释:因为路径 1→3→1→1→1 的总和最小。

  • 示例 2:
    输入:grid = [[1,2,3],[4,5,6]]
    输出:12

class Solution {
    public int minPathSum(int[][] grid) {

    }
}

🚩算法思路

像这种表格形式的动态规划,是⾮常容易得到「状态表⽰」以及「状态转移⽅程」的,可以归结到「不同路径」⼀类的题⾥⾯。

  1. 状态表⽰:
    对于这种路径类的问题,我们的状态表⽰⼀般有两种形式:
    • 从 [i, j] 位置出发,一系列操作;
    • 从起始位置出发,到达 [i, j] 位置,一系列操作。

这⾥选择第⼆种定义状态表⽰的⽅式:dp[i][j] 表⽰:到达 [i, j] 位置处,最⼩路径和是多少。

  1. 状态转移:
    简单分析⼀下。如果 dp[i][j] 表⽰到达到达 [i, j] 位置处的最⼩路径和,那么到达[i, j] 位置之前的⼀⼩步,有两种情况:
    • 从 [i - 1, j] 向下⾛⼀步,转移到 [i, j] 位置;
    • 从 [i, j - 1] 向右⾛⼀步,转移到 [i, j] 位置。

由于到 [i, j] 位置两种情况,并且我们要找的是最⼩路径,因此只需要这两种情况下的最⼩值,再加上 [i, j] 位置上本⾝的值即可。也就是: dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]

  1. 初始化:
    可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
    • 辅助结点⾥⾯的值要「保证后续填表是正确的」;
    • 「下标的映射关系」。

在本题中,「添加⼀⾏」,并且「添加⼀列」后,所有位置的值可以初始化为⽆穷⼤,然后让dp[0][1] = dp[1][0] = 1 即可。

  1. 填表顺序:
    根据「状态转移⽅程」的推导来看,填表的顺序就是「从上往下」填每⼀⾏,每⼀⾏「从左往后」。

  2. 返回值:
    根据「状态表⽰」,我们要返回的结果是 dp[m][n]

🚩代码实现

class Solution {
    public int minPathSum(int[][] grid) {
        // 1. 创建 dp 表
        // 2. 初始化
        // 3. 填表
        // 4. 返回值
        int m = grid.length;
        int n = grid[0].length;
        int[][] dp = new int[m + 1][n + 1];
        for(int j = 0; j <= n; j++)  {
            dp[0][j] = Integer.MAX_VALUE;
        }
        for(int i = 0; i <= m; i++) {
            dp[i][0] = Integer.MAX_VALUE;
        }
        dp[0][1] = dp[1][0] = 0;
        for(int i = 1; i <= m; i++){
            for(int j = 1; j <= n; j++) {
                dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j-1];
            }
        }
        return dp[m][n];
    }
}

🌴地下城游戏

🚩题目描述

恶魔们抓住了公主并将她关在了地下城 dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。

骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。

有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。

为了尽快解救公主,骑士决定每次只 向右 或 向下 移动一步。

返回确保骑士能够拯救到公主所需的最低初始健康点数。

注意:任何房间都可能对骑士的健康点数造成威胁,也可能增加骑士的健康点数,包括骑士进入的左上角房间以及公主被监禁的右下角房间。

  • 示例 1:
    【算法优选】 动态规划之路径问题——贰,算法优选,算法,动态规划,java
    输入:dungeon = [[-2,-3,3],[-5,-10,1],[10,30,-5]]
    输出:7
    解释:如果骑士遵循最佳路径:右 -> 右 -> 下 -> 下 ,则骑士的初始健康点数至少为 7 。

  • 示例 2:
    输入:dungeon = [[0]]
    输出:1

class Solution {
    public int calculateMinimumHP(int[][] dungeon) {

    }
}

🚩算法思路

  1. 状态表⽰:

这道题如果我们定义成:从起点开始,到达 [i, j] 位置的时候,所需的最低初始健康点数。那么我们分析状态转移的时候会有⼀个问题:那就是我们当前的健康点数还会受到后⾯的路径的影响。也就是从上往下的状态转移不能很好地解决问题。

这个时候我们要换⼀种状态表⽰:从 [i, j] 位置出发,到达终点时所需要的最低初始健康点数。这样我们在分析状态转移的时候,后续的最佳状态就已经知晓。

综上所述,定义状态表⽰为:
dp[i][j] 表⽰:从 [i, j] 位置出发,到达终点时所需的最低初始健康点数。

  1. 状态转移⽅程:
    对于 dp[i][j] ,从 [i, j] 位置出发,下⼀步会有两种选择(为了⽅便理解,设 dp[i] [j] 的最终答案是 x ):
    • ⾛到右边,然后⾛向终点
      那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于右边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i][j + 1] 。通过移项可得: x >= dp[i][j + 1] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i][j + 1] - dungeon[i][j] ;
    • ⾛到下边,然后⾛向终点
      那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于下边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i + 1][j] 。通过移项可得: x >= dp[i + 1][j] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i + 1][j] - dungeon[i][j] ;

综上所述,我们需要的是两种情况下的最⼩值,因此可得状态转移⽅程为:dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j]

但是,如果当前位置的 dungeon[i][j] 是⼀个⽐较⼤的正数的话, dp[i][j] 的值可能变成 0 或者负数。也就是最低点数会⼩于 1 ,那么骑⼠就会死亡。因此我们求出来的 dp[i][j] 如果⼩于等于 0 的话,说明此时的最低初始值应该为 1 。处理这种情况仅需让 dp[i][j] 与 1 取⼀个最⼤值即可:dp[i][j] = max(1, dp[i][j])

  1. 初始化:
    可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
    • 辅助结点⾥⾯的值要「保证后续填表是正确的」;
    • 「下标的映射关系」。

在本题中,在 dp 表最后⾯添加⼀⾏,并且添加⼀列后,所有的值都先初始化为⽆穷⼤,然后让dp[m][n - 1] = dp[m - 1][n] = 1 即可。

  1. 填表顺序:
    根据「状态转移⽅程」,我们需要「从下往上填每⼀⾏」,「每⼀⾏从右往左」。

  2. 返回值:
    根据「状态表⽰」,我们需要返回 dp[0][0] 的值

🚩代码实现

class Solution {
    public int calculateMinimumHP(int[][] d) {
        // 1. 创建 dp 表
        // 2. 初始化
        // 3. 填表
        // 4. 返回值
        int m = d.length;
        int n = d[0].length;
        int[][] dp = new int[m + 1][n + 1];
        for(int j = 0; j <= n; j++) {
            dp[m][j] = Integer.MAX_VALUE;
        }
        for(int i = 0; i <= m; i++) {
            dp[i][n] = Integer.MAX_VALUE;
        }
        dp[m][n - 1] = dp[m - 1][n] = 1;
        for(int i = m - 1; i >= 0; i--) {
            for(int j = n - 1; j >= 0; j--) {
                dp[i][j] = Math.min(dp[i][j + 1], dp[i + 1][j]) - d[i][j];
                dp[i][j] = Math.max(dp[i][j], 1);
            }
        }
        return dp[0][0];
    }
}

⭕总结

关于《【算法优选】 动态规划之路径问题——贰》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!文章来源地址https://www.toymoban.com/news/detail-751835.html

到了这里,关于【算法优选】 动态规划之路径问题——贰的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【算法】动态规划中的路径问题

    君兮_的个人主页 即使走的再远,也勿忘启程时的初心 C/C++ 游戏开发 Hello,米娜桑们,这里是君兮_,如果给算法的难度和复杂度排一个排名,那么动态规划算法一定名列前茅。今天,我们通过由简单到困难的两道题目带大家学会动态规划中的路径问题 好了废话不多说,开始我

    2024年02月05日
    浏览(27)
  • 基础算法之——【动态规划之路径问题】1

    今天更新动态规划路径问题1,后续会继续更新其他有关动态规划的问题!动态规划的路径问题,顾名思义,就是和路径相关的问题。当然,我们是从最简单的找路径开始! 动态规划的使用方法: 1.确定状态并定义状态数组:(i,j)代表什么意思?dp[i][j]又是什么意思? 2.确

    2024年02月07日
    浏览(30)
  • 【算法优选】 动态规划之斐波那契数列模型

    动态规划相关题目都可以参考以下五个步骤进行解答: 状态表⽰ 状态转移⽅程 初始化 填表顺序 返回值 后面题的解答思路也将按照这五个步骤进行讲解。 泰波那契序列 Tn 定义如下: T0 = 0, T1 = 1, T2 = 1, 且在 n = 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2 给你整数 n,请返回第 n 个泰波那契

    2024年02月05日
    浏览(44)
  • 【Java实现】动态规划算法解决01背包问题

    1、问题描述: 一个旅行者有一个最多能装m公斤的背包,现在有n中物品,每件的重量分别是W1、W2、……、Wn,每件物品的价值分别为C1、C2、……、Cn, 需要将物品放入背包中,要怎么样放才能保证背包中物品的总价值最大? 2、动态规划算法的概述 1)动态规划(Dynamic Progra

    2023年04月09日
    浏览(36)
  • 动态规划|【路径问题】|931.下降路径最小和

    目录 题目 题目解析 思路 1.状态表示 2.状态转移方程 3.初始化 4.填表顺序 5.返回值 代码 931. 下降路径最小和 给你一个  n x n  的  方形  整数数组  matrix  ,请你找出并返回通过  matrix  的 下降路径   的   最小和  。 下降路径  可以从第一行中的任何元素开始,并从每一

    2024年04月13日
    浏览(34)
  • 动态规划——路径问题

    目录 什么是路径问题? 练习 练习1:不同路径  练习2:不同路径II 练习3:珠宝的最高价值 练习4:下降路径最小和 练习5:地下城游戏 动态规划中的路径问题: 指在一个给定的网格中,从起点到终点有多条可能的路径,每条路径都有一个特定的权重或成本,动态规划路径问

    2024年04月27日
    浏览(33)
  • 动态规划-路径问题

    题目描述: 状态表示: 设dp[i][j]表示到达(i,j)位置时的路径数目。 状态转移方程: dp[i][j]=dp[i-1][j]+dp[i][j-1]。这里分析起来很简单,因为这算是很经典的问题了。机器人只能向下或者向右走,所以到达(i,j)就有两种方式,分别是从(i-1,j)向下以及(i,j-1)向右,那么到达(i,j)位置的

    2024年04月17日
    浏览(27)
  • C++--动态规划路径问题

    1.不同路径 力扣 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。 现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径

    2024年02月15日
    浏览(31)
  • 【动态规划】路径问题

    冻龟算法系列之路径问题 本文为动态规划的第二章:路径问题,重点讲解关于路径有关的问题,上一篇文章是一维的,那么路径问题就是二维的,通过题目可见需要创建二维的dp表,而以下将通过“解题”的方式去学习动归知识! 创建什么样的dp表,其实看题目就可以看出来

    2024年02月09日
    浏览(31)
  • 动态规划之路径问题

    1.题目链接:不同路径 2.题目描述: 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。 问总共有多少条不同的路径? 3.问题分析: 对于 动态

    2024年02月11日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包