Matlab实现Transformer 模型
Transformer由论文《Attention is All You Need》提出,现在是谷歌云TPU推荐的参考模型。论文相关的Tensorflow的代码可以从GitHub获取,其作为Tensor2Tensor包的一部分。哈佛的NLP团队也实现了一个基于PyTorch的版本,并注释该论文。对原理感兴趣的可以去查找相关论文和博客学习一下,本博客旨在基于Matlab实现Transformer 模型文章来源:https://www.toymoban.com/news/detail-751973.html
实现代码如下:
MATLAB 实现 Transformer 模型,包括用于多头注意力和前馈层的模块,可实现高级序列建模和特征提取。该代码可用于各种任务,例如自然语言处理和时间序列分析。文章来源地址https://www.toymoban.com/news/detail-751973.html
classdef Transformer < matlab.mixin.Copyable
properties
embedding
encoderLayers
end
methods
function obj = Transformer(inputDim, hiddenDim, numLayers, numHeads)
obj.embedding = embeddingLayer(hiddenDim, inputDim);
obj.encoderLayers = repmat(EncoderLayer(hiddenDim, numHeads), 1, numLayers);
end
function encoded = forward(obj, x)
embedded = obj.embedding(x);
encoded = embedded;
for i = 1:numel(obj.encoderLayers)
encoded = obj.encoderLayers(i).forward(encoded);
end
end
end
end
classdef EncoderLayer < matlab.mixin.Copyable
properties
multiheadAttention
feedForward
end
methods
function obj = EncoderLayer(hiddenDim, numHeads)
obj.multiheadAttention = MultiheadAttention(hiddenDim, numHeads);
obj.feedForward = FeedForward(hiddenDim);
end
function encoded = forward(obj, x)
attended = obj.multiheadAttention.forward(x, x, x);
encoded = obj.feedForward.forward(attended);
end
end
end
classdef MultiheadAttention < matlab.mixin.Copyable
properties
numHeads
headDim
qLinear
kLinear
vLinear
outLinear
end
methods
function obj = MultiheadAttention(hiddenDim, numHeads)
obj.numHeads = numHeads;
obj.headDim = hiddenDim / numHeads;
obj.qLinear = fullyConnectedLayer(hiddenDim);
obj.kLinear = fullyConnectedLayer(hiddenDim);
obj.vLinear = fullyConnectedLayer(hiddenDim);
obj.outLinear = fullyConnectedLayer(hiddenDim);
end
function attended = forward(obj, query, key, value)
batchSize = size(query, 1);
q = obj.qLinear.forward(query);
k = obj.kLinear.forward(key);
v = obj.vLinear.forward(value);
q = reshape(q, [batchSize, obj.numHeads, obj.headDim]);
k = reshape(k, [batchSize, obj.numHeads, obj.headDim]);
v = reshape(v, [batchSize, obj.numHeads, obj.headDim]);
scores = (q * k') / sqrt(obj.headDim);
attention = softmax(scores, 'dim', -1);
attended = attention * v';
attended = reshape(attended, [batchSize, obj.headDim * obj.numHeads]);
attended = obj.outLinear.forward(attended);
end
end
end
classdef FeedForward < matlab.mixin.Copyable
properties
linear1
linear2
end
methods
function obj = FeedForward(hiddenDim)
obj.linear1 = fullyConnectedLayer(hiddenDim * 4);
obj.linear2 = fullyConnectedLayer(hiddenDim);
end
function x = forward(obj, x)
x = obj.linear1.forward(x);
x = relu(x);
x = obj.linear2.forward(x);
end
end
end
% Usage example
inputDim = 1000;
hiddenDim = 256;
numLayers = 6;
numHeads = 8;
model = Transformer(inputDim, hiddenDim, numLayers, numHeads);
inputData = [1, 2, 3, 4, 5; 6, 7, 8, 9, 10]; % Example input data
output = model.forward(inputData);
disp(size(output));
到了这里,关于Matlab实现Transformer 模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!